2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimizing MRF-ASL Scan Design for Precise Quantification of Brain Hemodynamics using Neural Network Regression

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose: Arterial Spin Labeling (ASL) is a quantitative, non-invasive alternative to perfusion imaging with contrast agents. Fixing values of certain model parameters in traditional ASL, which actually vary from region to region, may introduce bias in perfusion estimates. Adopting Magnetic Resonance Fingerprinting (MRF) for ASL is an alternative where these parameters are estimated alongside perfusion, but multiparametric estimation can degrade precision. We aim to improve the sensitivity of ASL-MRF signals to underlying parameters to counter this problem, and provide precise estimates. We also propose a regression based estimation framework for MRF-ASL. Methods: To improve the sensitivity of MRF-ASL signals to underlying parameters, we optimize ASL labeling durations using the Cramer-Rao Lower Bound (CRLB). This paper also proposes a neural network regression based estimation framework trained using noisy synthetic signals generated from our ASL signal model. Results: We test our methods in silico and in vivo, and compare with multiple post labeling delay (multi-PLD) ASL and unoptimized MRF-ASL. We present comparisons of estimated maps for six parameters accounted for in our signal model. Conclusions: The scan design process facilitates precise estimates of multiple hemodynamic parameters and tissue properties from a single scan, in regions of gray and white matter, as well as regions with anomalous perfusion activity in the brain. The regression based estimation approach provides perfusion estimates rapidly, and bypasses problems with quantization error. Keywords: Arterial Spin Labeling, Magnetic Resonance Fingerprinting, Optimization, Cramer-Rao Bound, Scan Design, Regression, Neural Networks, Deep Learning, Precision, Estimation, Brain Hemodynamics.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Magnetic Resonance Fingerprinting

          Summary Magnetic Resonance (MR) is an exceptionally powerful and versatile measurement technique. The basic structure of an MR experiment has remained nearly constant for almost 50 years. Here we introduce a novel paradigm, Magnetic Resonance Fingerprinting (MRF) that permits the non-invasive quantification of multiple important properties of a material or tissue simultaneously through a new approach to data acquisition, post-processing and visualization. MRF provides a new mechanism to quantitatively detect and analyze complex changes that can represent physical alterations of a substance or early indicators of disease. MRF can also be used to specifically identify the presence of a target material or tissue, which will increase the sensitivity, specificity, and speed of an MR study, and potentially lead to new diagnostic testing methodologies. When paired with an appropriate pattern recognition algorithm, MRF inherently suppresses measurement errors and thus can improve accuracy compared to previous approaches.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Applications of arterial spin labeled MRI in the brain.

            Perfusion provides oxygen and nutrients to tissues and is closely tied to tissue function while disorders of perfusion are major sources of medical morbidity and mortality. It has been almost two decades since the use of arterial spin labeling (ASL) for noninvasive perfusion imaging was first reported. While initial ASL magnetic resonance imaging (MRI) studies focused primarily on technological development and validation, a number of robust ASL implementations have emerged, and ASL MRI is now also available commercially on several platforms. As a result, basic science and clinical applications of ASL MRI have begun to proliferate. Although ASL MRI can be carried out in any organ, most studies to date have focused on the brain. This review covers selected research and clinical applications of ASL MRI in the brain to illustrate its potential in both neuroscience research and clinical care. Copyright © 2012 Wiley Periodicals, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MR fingerprinting Deep RecOnstruction NEtwork (DRONE)

              PURPOSE Demonstrate a novel fast method for reconstruction of multi-dimensional MR Fingerprinting (MRF) data using Deep Learning methods. METHODS A neural network (NN) is defined using the TensorFlow framework and trained on simulated MRF data computed with the Extended Phase Graph formalism. The NN reconstruction accuracy for noiseless and noisy data is compared to conventional MRF template matching as a function of training data size, and quantified in simulated numerical brain phantom data and ISMRM/NIST phantom data measured on 1.5T and 3T scanners with an optimized MRF EPI and MRF FISP sequences with spiral readout. The utility of the method is demonstrated in a healthy subject in vivo at 1.5 T. RESULTS Network training required 10 to 74 minutes and once trained, data reconstruction required approximately 10 ms for the MRF EPI and 76 ms for the MRF FISP sequence. Reconstruction of simulated, noiseless brain data using the NN resulted in a root-mean-square error (RMSE) of 2.6 ms for T 1 and 1.9 ms for T 2 . The reconstruction error in the presence of noise was less than 10% for both T 1 and T 2 for signal-to-noise greater than 25 dB. Phantom measurements yielded good agreement (R 2 =0.99/0.99 for MRF EPI T 1 /T 2 and 0.94/0.98 for MRF FISP T 1 /T 2 ) between the T 1 and T 2 estimated by the NN and reference values from the ISMRM/NIST phantom. CONCLUSION Reconstruction of MRF data with a NN is accurate, 300–5000 fold faster and more robust to noise and undersampling than conventional MRF dictionary matching.
                Bookmark

                Author and article information

                Journal
                15 May 2019
                Article
                1905.06474
                ae6ae61e-b262-479c-9067-2459f618b194

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Submitted to Magnetic Resonance in Medicine
                eess.IV cs.LG eess.SP stat.ML

                Machine learning,Artificial intelligence,Electrical engineering
                Machine learning, Artificial intelligence, Electrical engineering

                Comments

                Comment on this article