21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gut Bacteria Missing in Severe Acute Malnutrition, Can We Identify Potential Probiotics by Culturomics?

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Severe acute malnutrition is the world-leading cause of children under-five's death. Recent metagenomics studies have established a link between gut microbiota and severe acute malnutrition, describing an immaturity with a striking depletion in oxygen-sensitive prokaryotes. Amoxicillin and therapeutic diet cure most of the children with severe acute malnutrition but an irreversible disruption of the gut microbiota is suspected in the refractory and most severe cases. In these cases, therapeutic diet may be unable to reverse the microbiota alteration leading to persistent impaired development or death. In addition, as enteric sepsis is a major cause of death in this context, identification of missing gut microbes to be tested as probiotics (live bacteria that confer a benefit to the host) to restore rapidly the healthy gut microbiota and prevent the gut pathogenic invasion is of foremost importance. In this study, stool samples of malnourished patients with kwashiorkor and healthy children were collected from Niger and Senegal and analyzed by culturomics and metagenomics. We found a globally decreased diversity, a decrease in the hitherto unknown diversity (new species isolation), a depletion in oxygen-sensitive prokaryotes including Methanobrevibacter smithii and an enrichment in potentially pathogenic Proteobacteria, Fusobacteria and Streptococcus gallolyticus. A complex of 12 species identified only in healthy children using culturomics and metagenomics were identified as probiotics candidates, providing a possible, defined, reproducible, safe, and convenient alternative to fecal transplantation to restore a healthy gut microbiota in malnourished children. Microbiotherapy based on selected strains has the potential to improve the current treatment of severe acute malnutrition and prevent relapse and death by reestablishing a healthy gut microbiota.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist.

          A recent increase in studies of β diversity has yielded a confusing array of concepts, measures and methods. Here, we provide a roadmap of the most widely used and ecologically relevant approaches for analysis through a series of mission statements. We distinguish two types of β diversity: directional turnover along a gradient vs. non-directional variation. Different measures emphasize different properties of ecological data. Such properties include the degree of emphasis on presence/absence vs. relative abundance information and the inclusion vs. exclusion of joint absences. Judicious use of multiple measures in concert can uncover the underlying nature of patterns in β diversity for a given dataset. A case study of Indonesian coral assemblages shows the utility of a multi-faceted approach. We advocate careful consideration of relevant questions, matched by appropriate analyses. The rigorous application of null models will also help to reveal potential processes driving observed patterns in β diversity. © 2010 Blackwell Publishing Ltd/CNRS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

            Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry accurately identifies both selected bacteria and bacteria in select clinical situations. It has not been evaluated for routine use in the clinic. We prospectively analyzed routine MALDI-TOF mass spectrometry identification in parallel with conventional phenotypic identification of bacteria regardless of phylum or source of isolation. Discrepancies were resolved by 16S ribosomal RNA and rpoB gene sequence-based molecular identification. Colonies (4 spots per isolate directly deposited on the MALDI-TOF plate) were analyzed using an Autoflex II Bruker Daltonik mass spectrometer. Peptidic spectra were compared with the Bruker BioTyper database, version 2.0, and the identification score was noted. Delays and costs of identification were measured. Of 1660 bacterial isolates analyzed, 95.4% were correctly identified by MALDI-TOF mass spectrometry; 84.1% were identified at the species level, and 11.3% were identified at the genus level. In most cases, absence of identification (2.8% of isolates) and erroneous identification (1.7% of isolates) were due to improper database entries. Accurate MALDI-TOF mass spectrometry identification was significantly correlated with having 10 reference spectra in the database (P=.01). The mean time required for MALDI-TOF mass spectrometry identification of 1 isolate was 6 minutes for an estimated 22%-32% cost of current methods of identification. MALDI-TOF mass spectrometry is a cost-effective, accurate method for routine identification of bacterial isolates in or =10 reference spectra per bacterial species and a 1.9 identification score (Brucker system). It may replace Gram staining and biochemical identification in the near future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota.

              Bacterial culture was the first method used to describe the human microbiota, but this method is considered outdated by many researchers. Metagenomics studies have since been applied to clinical microbiology; however, a "dark matter" of prokaryotes, which corresponds to a hole in our knowledge and includes minority bacterial populations, is not elucidated by these studies. By replicating the natural environment, environmental microbiologists were the first to reduce the "great plate count anomaly," which corresponds to the difference between microscopic and culture counts. The revolution in bacterial identification also allowed rapid progress. 16S rRNA bacterial identification allowed the accurate identification of new species. Mass spectrometry allowed the high-throughput identification of rare species and the detection of new species. By using these methods and by increasing the number of culture conditions, culturomics allowed the extension of the known human gut repertoire to levels equivalent to those of pyrosequencing. Finally, taxonogenomics strategies became an emerging method for describing new species, associating the genome sequence of the bacteria systematically. We provide a comprehensive review on these topics, demonstrating that both empirical and hypothesis-driven approaches will enable a rapid increase in the identification of the human prokaryote repertoire.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                23 May 2017
                2017
                : 8
                : 899
                Affiliations
                [1] 1URMITE, Aix Marseille Université, UM63, Centre National de la Recherche Scientifique 7278, IRD 198, Institut National de la Santé Et de la Recherche Médicale 1095, IHU—Méditerranée Infection Marseille, France
                [2] 2Laboratoire de Microbiologie, Département de Biologie, Université Abdou Moumouni de Niamey Niamey, Niger
                [3] 3Département d'Epidémiologie des Affections Parasitaires, Faculté de Médecine, Université des Sciences, des Techniques et Technologies de Bamako Bamako, Mali
                [4] 4Service de Médecine Interne et Générale, Hôpital de Niamey Niamey, Niger
                [5] 5Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes IRD 198, Centre National de la Recherche Scientifique 7278, Aix-Marseille Université Dakar, Senegal
                [6] 6Department of Medicine and Therapeutics, University of Aberdeen Aberdeen, United Kingdom
                Author notes

                Edited by: John W. A. Rossen, University Medical Center Groningen, Netherlands

                Reviewed by: Abelardo Margolles, Consejo Superior de Investigaciones Científicas (CSIC), Spain; Eleni Sibbald-Tsompanidou, University Medical Center Groningen, Netherlands

                *Correspondence: Didier Raoult didier.raoult@ 123456gmail.com

                This article was submitted to Infectious Diseases, a section of the journal Frontiers in Microbiology

                †These authors have contributed equally to this work.

                Article
                10.3389/fmicb.2017.00899
                5440526
                28588566
                ae6d1d84-ad3c-48f5-be0e-20c1f31e9655
                Copyright © 2017 Tidjani Alou, Million, Traore, Mouelhi, Khelaifia, Bachar, Caputo, Delerce, Brah, Alhousseini, Sokhna, Robert, Diallo, Diallo, Parola, Golden, Lagier and Raoult.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 20 October 2016
                : 03 May 2017
                Page count
                Figures: 5, Tables: 8, Equations: 0, References: 101, Pages: 17, Words: 12715
                Funding
                Funded by: Fondation Méditerranée Infection 10.13039/100007356
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                severe acute malnutrition,kwashiorkor,gut microbiota,culturomics,metagenomics,probiotics,methanobrevibacter smithii,streptococcus gallolyticus

                Comments

                Comment on this article