19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      SorCS2 is required for BDNF-dependent plasticity in the hippocampus.

      Molecular Psychiatry
      Springer Nature America, Inc

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          SorCS2 is a member of the Vps10p-domain receptor gene family receptors with critical roles in the control of neuronal viability and function. Several genetic studies have suggested SORCS2 to confer risk of bipolar disorder, schizophrenia and attention deficit-hyperactivity disorder. Here we report that hippocampal N-methyl-d-aspartate receptor-dependent synaptic plasticity is eliminated in SorCS2-deficient mice. This defect was traced to the ability of SorCS2 to form complexes with the neurotrophin receptor p75NTR, required for pro-brain-derived neurotrophic factor (BDNF) to induce long-term depression, and with the BDNF receptor tyrosine kinase TrkB to elicit long-term potentiation. Although the interaction with p75NTR was static, SorCS2 bound to TrkB in an activity-dependent manner to facilitate its translocation to postsynaptic densities for synaptic tagging and maintenance of synaptic potentiation. Neurons lacking SorCS2 failed to respond to BDNF by TrkB autophosphorylation, and activation of downstream signaling cascades, impacting neurite outgrowth and spine formation. Accordingly, Sorcs2-/- mice displayed impaired formation of long-term memory, increased risk taking and stimulus seeking behavior, enhanced susceptibility to stress and impaired prepulse inhibition. Our results identify SorCS2 as an indispensable coreceptor for p75NTR and TrkB in hippocampal neurons and suggest SORCS2 as the link between proBDNF/BDNF signaling and mental disorders.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Synaptic tagging and long-term potentiation.

          Repeated stimulation of hippocampal neurons can induce an immediate and prolonged increase in synaptic strength that is called long-term potentiation (LTP)-the primary cellular model of memory in the mammalian brain. An early phase of LTP (lasting less than three hours) can be dissociated from late-phase LTP by using inhibitors of transcription and translation, Because protein synthesis occurs mainly in the cell body, whereas LTP is input-specific, the question arises of how the synapse specificity of late LTP is achieved without elaborate intracellular protein trafficking. We propose that LTP initiates the creation of a short-lasting protein-synthesis-independent 'synaptic tag' at the potentiated synapse which sequesters the relevant protein(s) to establish late LTP. In support of this idea, we now show that weak tetanic stimulation, which ordinarily leads only to early LTP, or repeated tetanization in the presence of protein-synthesis inhibitors, each results in protein-synthesis-dependent late LTP, provided repeated tetanization has already been applied at another input to the same population of neurons. The synaptic tag decays in less than three hours. These findings indicate that the persistence of LTP depends not only on local events during its induction, but also on the prior activity of the neuron.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The global burden of disease, 1990-2020.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Making memories last: the synaptic tagging and capture hypothesis.

              The synaptic tagging and capture hypothesis of protein synthesis-dependent long-term potentiation asserts that the induction of synaptic potentiation creates only the potential for a lasting change in synaptic efficacy, but not the commitment to such a change. Other neural activity, before or after induction, can also determine whether persistent change occurs. Recent findings, leading us to revise the original hypothesis, indicate that the induction of a local, synapse-specific 'tagged' state and the expression of long-term potentiation are dissociable. Additional observations suggest that there are major differences in the mechanisms of functional and structural plasticity. These advances call for a revised theory that incorporates the specific molecular and structural processes involved. Addressing the physiological relevance of previous in vitro findings, new behavioural studies have experimentally translated the hypothesis to learning and the consolidation of newly formed memories.
                Bookmark

                Author and article information

                Journal
                27457814
                10.1038/mp.2016.108

                Comments

                Comment on this article