15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      LncRNA ADAMTS9-AS2 inhibits gastric cancer (GC) development and sensitizes chemoresistant GC cells to cisplatin by regulating miR-223-3p/NLRP3 axis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The role of LncRNA ADAMTS9-AS2 in the regulation of chemoresistance of gastric cancer (GC) is largely unknown. Here we found that LncRNA ADAMTS9-AS2 was low-expressed in GC tissues and cells compared to their normal counterparts. In addition, LncRNA ADAMTS9-AS2 inhibited miR-223-3p expressions in GC cells by acting as competing endogenous RNA, and the levels of LncRNA ADAMTS9-AS2 and miR-223-3p showed negative correlations in GC tissues. Of note, overexpression of LncRNA ADAMTS9-AS2 inhibited GC cell viability and motility by sponging miR-223-3p. In addition, the levels of LncRNA ADAMTS9-AS2 were lower, and miR-223-3p was higher in cisplatin-resistant GC (CR-GC) cells than their parental cisplatin-sensitive GC (CS-GC) cells. LncRNA ADAMTS9-AS2 overexpression enhanced the cytotoxic effects of cisplatin on CR-GC cells, which were reversed by overexpressing miR-223-3p. Furthermore, LncRNA ADAMTS9-AS2 increased NLRP3 expressions by targeting miR-223-3p, and upregulation of LncRNA ADAMTS9-AS2 triggered pyroptotic cell death in cisplatin treated CR-GC cells by activating NLRP3 inflammasome through downregulating miR-223-3p. Finally, the promoting effects of LncRNA ADAMTS9-AS2 overexpression on CR-GC cell death were abrogated by pyroptosis inhibitor Necrosulfonamide (NSA). Collectively, LncRNA ADAMTS9-AS2 acted as a tumor suppressor and enhanced cisplatin sensitivity in GC cells by activating NLRP3 mediated pyroptotic cell death through sponging miR-223-3p.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          LncRNA HOXA11-AS Promotes Proliferation and Invasion of Gastric Cancer by Scaffolding the Chromatin Modification Factors PRC2, LSD1, and DNMT1.

          Long noncoding RNAs (lncRNA) have been implicated in human cancer but their mechanisms of action are mainly undocumented. In this study, we investigated lncRNA alterations that contribute to gastric cancer through an analysis of The Cancer Genome Atlas RNA sequencing data and other publicly available microarray data. Here we report the gastric cancer-associated lncRNA HOXA11-AS as a key regulator of gastric cancer development and progression. Patients with high HOXA11-AS expression had a shorter survival and poorer prognosis. In vitro and in vivo assays of HOXA11-AS alterations revealed a complex integrated phenotype affecting cell growth, migration, invasion, and apoptosis. Strikingly, high-throughput sequencing analysis after HOXA11-AS silencing highlighted alterations in cell proliferation and cell-cell adhesion pathways. Mechanistically, EZH2 along with the histone demethylase LSD1 or DNMT1 were recruited by HOXA11-AS, which functioned as a scaffold. HOXA11-AS also functioned as a molecular sponge for miR-1297, antagonizing its ability to repress EZH2 protein translation. In addition, we found that E2F1 was involved in HOXA11-AS activation in gastric cancer cells. Taken together, our findings support a model in which the EZH2/HOXA11-AS/LSD1 complex and HOXA11-AS/miR-1297/EZH2 cross-talk serve as critical effectors in gastric cancer tumorigenesis and progression, suggesting new therapeutic directions in gastric cancer. Cancer Res; 76(21); 6299-310. ©2016 AACR.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis.

            Atherosclerosis (AS) is an inflammatory disease linked to endothelial dysfunction. Melatonin is reported to possess substantial anti-inflammatory properties, which has proven to be effective in AS. Emerging literature suggests that pyroptosis plays a critical role during AS progression. However, whether pyroptosis contributes to endothelial dysfunction and the underlying molecular mechanisms remained unexploited. This study was designed to investigate the antipyroptotic effects of melatonin in atherosclerotic endothelium and to elucidate the potential mechanisms. In this study, high-fat diet (HFD)-treated ApoE-/- mice were used as an atherosclerotic animal model. We found intragastric administration of melatonin for 12 weeks markedly reduced the atherosclerotic plaque in aorta. Meanwhile, melatonin also attenuated the expression of pyroptosis-related genes, including NLRP3, ASC, cleaved caspase1, NF-κB/GSDMD, GSDMD N-termini, IL-1β, and IL-18 in aortic endothelium of melatonin-treated animals. Consistent antipyroptotic effects were also observed in ox-LDL-treated human aortic endothelial cells (HAECs). We found that lncRNA MEG3 enhanced pyroptosis in HAECs. Moreover, MEG3 acted as an endogenous sponge by sequence complementarity to suppress the function of miR-223 and to increase NLRP3 expression and enhance endothelial cell pyroptosis. Furthermore, knockdown of miR-223 blocked the antipyroptotic actions of melatonin in ox-LDL-treated HAECs. Together, our results suggest that melatonin prevents endothelial cell pyroptosis via MEG3/miR-223/NLRP3 axis in atherosclerosis, and therefore, melatonin replacement might be considered a new strategy for protecting endothelium against pyroptosis, thereby for the treatment of atherosclerosis associated with pyroptosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 lung cancer cells via caspase-3/GSDME activation

              Gasdermin E (GSDME) has an important role in inducing secondary necrosis/pyroptosis. Upon apoptotic stimulation, it can be cleaved by activated caspase-3 to generate its N-terminal fragment (GSDME-NT), which executes pyroptosis by perforating the plasma membrane. GSDME is expressed in many human lung cancers including A549 cells. Paclitaxel and cisplatin are two representative chemotherapeutic agents for lung cancers, which induce apoptosis via different action mechanisms. However, it remains unclear whether they can induce GSDME-mediated secondary necrosis/pyroptosis in lung A549 cancer cells. Here we showed that both paclitaxel and cisplatin evidently induced apoptosis in A549 cells as revealed by the activation of multiple apoptotic markers. Notably, some of the dying cells displayed characteristic morphology of secondary necrosis/pyroptosis, by blowing large bubbles from the cellular membrane accompanied by caspase-3 activation and GSDME-NT generation. But the ability of cisplatin to induce this phenomenon was much stronger than that of paclitaxel. Consistent with this, cisplatin triggered much higher activation of caspase-3 and generation of GSDME-NT than paclitaxel, suggesting that the levels of secondary necrosis/pyroptosis correlated with the levels of active caspase-3 and GSDME-NT. Supporting this, caspase-3 specific inhibitor (Ac-DEVD-CHO) suppressed cisplatin-induced GSDME-NT generation and concurrently reduced the secondary necrosis/pyroptosis. Besides, GSDME knockdown significantly inhibited cisplatin- but not paclitaxel-induced secondary necrosis/pyroptosis. These results indicated that cisplatin induced higher levels of secondary necrosis/pyroptosis in A549 cells than paclitaxel, suggesting that cisplatin may provide additional advantages in the treatment of lung cancers with high levels of GSDME expression.
                Bookmark

                Author and article information

                Journal
                Aging (Albany NY)
                Aging (Albany NY)
                Aging
                Aging (Albany NY)
                Impact Journals
                1945-4589
                15 June 2020
                09 June 2020
                : 12
                : 11
                : 11025-11041
                Affiliations
                [1 ]Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
                Author notes
                [*]

                Co-first authors

                Correspondence to: Yuekun Zhu; email: yuekun_zhu@126.com
                Correspondence to: Daxun Piao; email: daxun_piao098@126.com
                Correspondence to: Tiemin Zhang; email: tiemin_zhang228@126.com
                Article
                103314 103314
                10.18632/aging.103314
                7346038
                32516127
                ae7aba9d-3ce5-41a9-a716-1ab9ef951900
                Copyright © 2020 Ren et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 01 February 2020
                : 28 April 2020
                Categories
                Research Paper

                Cell biology
                gastric cancer,pyroptotic cell death,lncrna adamts9-as2,mir-223-3p,nlrp3 inflammasome
                Cell biology
                gastric cancer, pyroptotic cell death, lncrna adamts9-as2, mir-223-3p, nlrp3 inflammasome

                Comments

                Comment on this article