15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Conceptual and technical insights into the basis of neuromuscular monitoring

      , ,
      Anaesthesia
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine.

          We propose a model of drug pharmacodynamic response that when integrated with a pharmacokinetic model allows characterization of the temporal aspects of pharmacodynamics as well as the time-independent sensitivity component. The total model can accommodate extremes of effect. It allows fitting of simultaneous plasma concentration (Cp) and effect data from the initial distribution phase of drug administration, or from any non-equilibrium phase. The model postulates a hypothetical effect compartment, the dynamics of which are adjusted to reflect the temporal dynamics of drug effect. The effect compartment is modeled as an additional compartment linked to the plasma compartment by a first-order process, but whose exponential does not enter into the pharmacokinetic solution for the mass of drug in the body. The hypothetical amount of drug in the effect compartment is then related to the observed effect by the Hill equation, a nonlinear sigmoid form. Nonlinear least-squares data fitting is used for parameter estimation. The model is demonstrated on two different sets of Cp and effect data for the drug d-tubocurarine (dTC). In 7 normal subjects, the (mean +/- SD) rate constant for equilibration of dTC effect (paralysis) and Cp is 0.13 +/- 0.04 min-1 and the (mean +/- SD) steady-state Cp required to produce 50% paralysis is 0.37 +/- 0.05 microgram/ml.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial involvement in post-tetanic potentiation of synaptic transmission.

            Posttetanic potentiation (PTP) is an essential aspect of synaptic transmission that arises from a persistent presynaptic [Ca2+]i following tetanic stimulation. At crayfish neuromuscular junctions, several inhibitors of mitochondrial Ca2+ uptake and release (tetraphenylphosphonium or TPP+, carbonyl cyanide m-chlorophenylhydrazone or CCCP, and ruthenium red) blocked PTP and the persistence of presynaptic residual [Ca2+]i, while endoplasmic reticulum (ER) Ca2+ pump inhibitors and release channel activators (thapsigargin, 2,5-di-(tert-butyl)-1,4-benzohydroquinone or BHQ, and caffeine) had no effects. PTP apparently results from the slow efflux of tetanically accumulated mitochondrial Ca2+.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Residual paralysis in the PACU after a single intubating dose of nondepolarizing muscle relaxant with an intermediate duration of action.

              Residual neuromuscular blockade remains a problem even after short surgical procedures. The train-of-four (TOF) ratio at the adductor pollicis required to avoid residual paralysis is now considered to be at least 0.9. The incidence of residual paralysis using this new threshold is not known, especially after a single intubating dose of intermediate-duration nondepolarizing relaxant. Therefore, the aim of the study was to determine the incidence of residual paralysis in the postanesthesia care unit after a single intubating dose of twice the ED(95) of a nondepolarizing muscle relaxant with an intermediate duration of action. Five hundred twenty-six patients were enrolled. They received a single dose of vecuronium, rocuronium, or atracurium to facilitate tracheal intubation and received no more relaxant thereafter. Neuromuscular blockade was not reversed at the end of the procedure. On arrival in the postanesthesia care unit, the TOF ratio was measured at the adductor pollicis, using acceleromyography. Head lift, tongue depressor test, and manual assessment of TOF and DBS fade were also performed. The time delay between the injection of muscle relaxant and quantitative measurement of neuromuscular blockade was calculated from computerized anesthetic records. The TOF ratios less than 0.7 and 0.9 were observed in 16% and 45% of the patients, respectively. Two hundred thirty-nine patients were tested 2 h or more after the administration of the muscle relaxant. Ten percent of these patients had a TOF ratio less than 0.7, and 37% had a TOF ratio less than 0.9. Clinical tests (head lift and tongue depressor) and manual assessment of fade showed a poor sensitivity (11-14%) to detect residual blockade (TOF < 0.9). After a single dose of intermediate-duration muscle relaxant and no reversal, residual paralysis is common, even more than 2 h after the administration of muscle relaxant. Quantitative measurement of neuromuscular transmission is the only recommended method to diagnose residual block.
                Bookmark

                Author and article information

                Journal
                Anaesthesia
                Anaesthesia
                Wiley-Blackwell
                00032409
                January 2017
                January 02 2017
                : 72
                :
                : 16-37
                Article
                10.1111/anae.13738
                28044330
                ae7fd5e6-ea07-4d6f-9329-16d3c394db8d
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1

                History

                Comments

                Comment on this article