2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coordinated Active-Reactive Power Management of ReP2H Systems with Multiple Electrolyzers

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Utility-scale renewable power-to-hydrogen (ReP2H) production typically uses thyristor rectifiers (TRs) to supply power to multiple electrolyzers (ELZs). They exhibit a nonlinear and non-decouplable relation between active and reactive power. The on-off scheduling and load allocation of multiple ELZs simultaneously impact energy conversion efficiency and AC-side active and reactive power flow. Improper scheduling may result in excessive reactive power demand, causing voltage violations and increased network losses, compromising safety and economy. To address these challenges, this paper first explores trade-offs between the efficiency and the reactive load of the electrolyzers. Subsequently, we propose a coordinated approach for scheduling the active and reactive power in the ReP2H system. A mixed-integer second-order cone programming (MISOCP) is established to jointly optimize active and reactive power by coordinating the ELZs, renewable energy sources, energy storage (ES), and var compensations. Case studies demonstrate that the proposed method reduces losses by 3.06% in an off-grid ReP2H system while increasing hydrogen production by 5.27% in average.

          Related collections

          Author and article information

          Journal
          22 December 2023
          Article
          2312.14473
          ae85d8fe-bd5f-42e8-9928-693bbc920fd9

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          math.OC cs.SY eess.SY

          Numerical methods,Performance, Systems & Control
          Numerical methods, Performance, Systems & Control

          Comments

          Comment on this article