9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A brief review of kidney development, maturation, developmental abnormalities, and drug toxicity: juvenile animal relevancy

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nonclinical juvenile animal tests perform a valuable role in determining adverse drug effects during periods of organogenesis and/or functional maturation. Developmental anatomic and functional maturation time points are important to consider between juveniles and adults when regarding different organ toxicities in response to drug administration. The kidney is an example of a major organ that has differences in these time points in comparing juveniles to adults and in contrasting humans to laboratory animal species. Toxicologic pathologists, involved in juvenile studies, need to be aware of these time points which are age-related exposure periods of sensitivity to drug toxicity. Age-related developmental anatomic and functional maturation are factors which can affect the way that a drug is absorbed, distributed, metabolized, and excreted (ADME). Changes to any component of ADME may alter drug toxicity resulting in kidney abnormalities, nephrotoxicity, or maturational disorders. Juvenile animal kidneys may either be less resistant or more resistant to known adult nephrotoxic drug effects. Furthermore, drug toxicity observed in juvenile animal kidneys may not always correspond to similar toxicities in humans. Juvenile animal nonclinical toxicology studies targeting the kidneys have to be carefully planned to attain the maximum knowledge from each study.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: not found
          • Article: not found

          The fetal and infant origins of adult disease.

            • Record: found
            • Abstract: found
            • Article: not found

            Nephron number in patients with primary hypertension.

            A diminished number of nephrons has been proposed as one of the factors contributing to the development of primary hypertension. To test this hypothesis, we used a three-dimensional stereologic method to compare the number and volume of glomeruli in 10 middle-aged white patients (age range, 35 to 59 years) with a history of primary hypertension or left ventricular hypertrophy (or both) and renal arteriolar lesions with the number and volume in 10 normotensive subjects matched for sex, age, height, and weight. All 20 subjects had died in accidents. Patients with hypertension had significantly fewer glomeruli per kidney than matched normotensive controls (median, 702,379 vs. 1,429,200). Patients with hypertension also had a significantly greater glomerular volume than did the controls (median, 6.50x10(-3) mm3 vs. 2.79x10(-3) mm3; P<0.001) but very few obsolescent glomeruli. The data support the hypothesis that the number of nephrons is reduced in white patients with primary hypertension. Copyright 2003 Massachusetts Medical Society
              • Record: found
              • Abstract: found
              • Article: not found

              The cellular basis of kidney development.

              Mammalian kidney development has helped elucidate the general concepts of mesenchymal-epithelial interactions, inductive signaling, epithelial cell polarization, and branching morphogenesis. Through the use of genetically engineered mouse models, the manipulation of Xenopus and chick embryos, and the identification of human renal disease genes, the molecular bases for many of the early events in the developing kidney are becoming increasingly clear. Early patterning of the kidney region depends on interactions between Pax/Eya/Six genes, with essential roles for lim1 and Odd1. Ureteric bud outgrowth and branching morphogenesis are controlled by the Ret/Gdnf pathway, which is subject to positive and negative regulation by a variety of factors. A clear role for Wnt proteins in induction of the kidney mesenchyme is now well established and complements the classic literature nicely. Patterning along the proximal distal axis as the nephron develops is now being investigated and must involve aspects of Notch signaling. The development of a glomerulus requires interactions between epithelial cells and infiltrating endothelial cells to generate a unique basement membrane. The integrity of the glomerular filter depends in large part on the proteins of the nephrin complex, localized to the slit diaphragm. Despite the kidney's architectural complexity, with the advent of genomics and expression arrays, it is becoming one of the best-characterized organ systems in developmental biology.

                Author and article information

                Journal
                J Toxicol Pathol
                J Toxicol Pathol
                TOX
                Journal of Toxicologic Pathology
                Japanese Society of Toxicologic Pathology
                0914-9198
                1881-915X
                11 February 2017
                April 2017
                : 30
                : 2
                : 125-133
                Affiliations
                [1 ]Experimental Pathology Laboratories, Inc., P.O. Box 12766, Research Triangle Park, NC 27709, USA
                Author notes
                *Corresponding author: JC Seely (e-mail: jseely@ 123456epl-inc.com )
                Article
                2017-0006
                10.1293/tox.2017-0006
                5406591
                28458450
                ae89a2b6-6aeb-40aa-812c-fce20751bbac
                ©2017 The Japanese Society of Toxicologic Pathology

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/ ).

                History
                : 23 January 2017
                : 24 January 2017
                Categories
                Review

                Pathology
                kidney,juvenile animals,development,maturation,abnormalities,toxicity
                Pathology
                kidney, juvenile animals, development, maturation, abnormalities, toxicity

                Comments

                Comment on this article

                Related Documents Log