14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sequential shape-and-solder-directed self-assembly of functional microsystems

      , ,
      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We demonstrate the fabrication of packaged microsystems that contain active semiconductor devices and passive components by using a directed self-assembly technique. The directed self-assembly is accomplished by combining geometrical shape recognition with site-specific binding involving liquid solder. Microfabricated components with matching complementary shapes, circuits, and liquid solder-coated areas were suspended in ethylene glycol and agitated by using a turbulent liquid flow to initiate the self-assembly. Microsystems were obtained by sequentially adding components of different types. Six hundred AlGaInP/GaAs light-emitting diode segments with a chip size of 200 microm were assembled onto device carriers with a yield of 100% in 2 min. Packaged light-emitting diodes formed with yields exceeding 97% as a result of two self-assembly steps in 4 min. This self-assembly procedure, based on geometrical shape recognition and subsequent binding to form mechanical and electrical connections, provides a high distinguishing power between different components and a route to nonrobotic parallel assembly of electrically functional hybrid microsystems in three dimensions.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Fabrication of novel biomaterials through molecular self-assembly.

          Two complementary strategies can be used in the fabrication of molecular biomaterials. In the 'top-down' approach, biomaterials are generated by stripping down a complex entity into its component parts (for example, paring a virus particle down to its capsid to form a viral cage). This contrasts with the 'bottom-up' approach, in which materials are assembled molecule by molecule (and in some cases even atom by atom) to produce novel supramolecular architectures. The latter approach is likely to become an integral part of nanomaterials manufacture and requires a deep understanding of individual molecular building blocks and their structures, assembly properties and dynamic behaviors. Two key elements in molecular fabrication are chemical complementarity and structural compatibility, both of which confer the weak and noncovalent interactions that bind building blocks together during self-assembly. Using natural processes as a guide, substantial advances have been achieved at the interface of nanomaterials and biology, including the fabrication of nanofiber materials for three-dimensional cell culture and tissue engineering, the assembly of peptide or protein nanotubes and helical ribbons, the creation of living microlenses, the synthesis of metal nanowires on DNA templates, the fabrication of peptide, protein and lipid scaffolds, the assembly of electronic materials by bacterial phage selection, and the use of radiofrequency to regulate molecular behaviors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Forming electrical networks in three dimensions by self-assembly

            Self-assembly of millimeter-scale polyhedra, with surfaces patterned with solder dots, wires, and light-emitting diodes, generated electrically functional, three-dimensional networks. The patterns of dots and wires controlled the structure of the networks formed; both parallel and serial connections were generated.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fabrication of a cylindrical display by patterned assembly.

              We demonstrate the patterned assembly of integrated semiconductor devices onto planar, flexible, and curved substrates on the basis of capillary interactions involving liquid solder. The substrates presented patterned, solder-coated areas that acted both as receptors for the components of the device during its assembly and as electrical connections during its operation. The components were suspended in water and agitated gently. Minimization of the free energy of the solder-water interface provided the driving force for the assembly. One hundred and thirteen GaAlAs light-emitting diodes with a chip size of 280 micrometers were fabricated into a prototype cylindrical display. It was also possible to assemble 1500 silicon cubes, on an area of 5 square centimeters, in less than 3 minutes, with a defect rate of approximately 2%.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                August 31 2004
                August 18 2004
                August 31 2004
                : 101
                : 35
                : 12814-12817
                Article
                10.1073/pnas.0404437101
                516478
                15317938
                ae8c5762-792b-4418-b32c-8369646071b9
                © 2004
                History

                Comments

                Comment on this article