20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Network Analysis of the Systemic Response to Fasciola hepatica Infection in Sheep Reveals Changes in Fibrosis, Apoptosis, Toll-Like Receptors 3/4, and B Cell Function

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Trematode Fasciola hepatica is an important cause of disease in livestock and in man. Modulation of immunity is a critical strategy used by this parasite to facilitate its long-term survival in the host. Understanding the underlying mechanisms at a system level is important for the development of novel control strategies, such as vaccination, as well as for increasing general understanding of helminth-mediated immunoregulation and its consequences. Our previous RNA sequencing work identified a large number of differentially expressed genes (DEG) from ovine peripheral blood mononuclear cells (PBMCs) at acute and chronic stages of F. hepatica infection, and yielded important information on host–parasite interaction, with particular reference to the immune response. To extend our understanding of the immunoregulatory effects of this parasite, we employed InnateDB to further analyze the DEG dataset and identified 2,458 and 224 molecular interactions in the context of innate immunity from the acute and chronic stages of infection, respectively. Notably, 458 interactions at the acute stage of infection were manually curated from studies involving PBMC-related cell-types, which guaranteed confident hypothesis generation. NetworkAnalyst was subsequently used to construct and visualize molecular networks. Two complementary strategies (function-first and connection-first) were conducted to interpret the networks. The function-first approach highlighted subnetworks implicated in regulation of Toll-like receptor 3/4 signaling in both acute and chronic infections. The connection-first approach highlighted regulation of intrinsic apoptosis and B-cell receptor-signaling during acute and chronic infections, respectively. To the best of our knowledge, this study is the first system level analysis of the regulation of host innate immunity during F. hepatica infection. It provides insights into the profound changes induced by F. hepatica infection that not only favors parasite survival into chronic infection but also impedes the host’s immune response to other pathogens, and render vaccination against fasciolosis a difficult challenge. The information provided will be useful in the design of specific vaccine protocols to overcome parasite-mediated immunoregulation and in furthering general understanding of the interplay between helminth infection and host immune systems.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Toll-like receptors: critical proteins linking innate and acquired immunity.

          Recognition of pathogens is mediated by a set of germline-encoded receptors that are referred to as pattern-recognition receptors (PRRs). These receptors recognize conserved molecular patterns (pathogen-associated molecular patterns), which are shared by large groups of microorganisms. Toll-like receptors (TLRs) function as the PRRs in mammals and play an essential role in the recognition of microbial components. The TLRs may also recognize endogenous ligands induced during the inflammatory response. Similar cytoplasmic domains allow TLRs to use the same signaling molecules used by the interleukin 1 receptors (IL-1Rs): these include MyD88, IL-1R--associated protein kinase and tumor necrosis factor receptor--activated factor 6. However, evidence is accumulating that the signaling pathways associated with each TLR are not identical and may, therefore, result in different biological responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MD-2, a Molecule that Confers Lipopolysaccharide Responsiveness on Toll-like Receptor 4

            Toll-like receptor 4 (TLR4) is a mammalian homologue of Drosophila Toll, a leucine-rich repeat molecule that can trigger innate responses against pathogens. The TLR4 gene has recently been shown to be mutated in C3H/HeJ and C57BL/10ScCr mice, both of which are low responders to lipopolysaccharide (LPS). TLR4 may be a long-sought receptor for LPS. However, transfection of TLR4 does not confer LPS responsiveness on a recipient cell line, suggesting a requirement for an additional molecule. Here, we report that a novel molecule, MD-2, is requisite for LPS signaling of TLR4. MD-2 is physically associated with TLR4 on the cell surface and confers responsiveness to LPS. MD-2 is thus a link between TLR4 and LPS signaling. Identification of this new receptor complex has potential implications for understanding host defense, as well as pathophysiologic, mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              NetworkAnalyst - integrative approaches for protein–protein interaction network analysis and visual exploration

              Biological network analysis is a powerful approach to gain systems-level understanding of patterns of gene expression in different cell types, disease states and other biological/experimental conditions. Three consecutive steps are required - identification of genes or proteins of interest, network construction and network analysis and visualization. To date, researchers have to learn to use a combination of several tools to accomplish this task. In addition, interactive visualization of large networks has been primarily restricted to locally installed programs. To address these challenges, we have developed NetworkAnalyst, taking advantage of state-of-the-art web technologies, to enable high performance network analysis with rich user experience. NetworkAnalyst integrates all three steps and presents the results via a powerful online network visualization framework. Users can upload gene or protein lists, single or multiple gene expression datasets to perform comprehensive gene annotation and differential expression analysis. Significant genes are mapped to our manually curated protein-protein interaction database to construct relevant networks. The results are presented through standard web browsers for network analysis and interactive exploration. NetworkAnalyst supports common functions for network topology and module analyses. Users can easily search, zoom and highlight nodes or modules, as well as perform functional enrichment analysis on these selections. The networks can be customized with different layouts, colors or node sizes, and exported as PNG, PDF or GraphML files. Comprehensive FAQs, tutorials and context-based tips and instructions are provided. NetworkAnalyst currently supports protein-protein interaction network analysis for human and mouse and is freely available at http://www.networkanalyst.ca.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                25 April 2017
                2017
                : 8
                : 485
                Affiliations
                [1] 1UCD School of Veterinary Medicine, University College Dublin , Dublin, Ireland
                [2] 2UCD School of Agriculture and Food Science, University College Dublin , Dublin, Ireland
                [3] 3UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Dublin, Ireland
                Author notes

                Edited by: Juarez Antonio Simões Quaresma, Federal University of Pará, Brazil

                Reviewed by: Mark W. Robinson, Queen’s University Belfast, Ireland; Dirk Werling, Royal Veterinary College, UK; Mohey Eldin El Shikh, Queen Mary University of London, UK

                *Correspondence: Yan Fu, yan.fu1986@ 123456hotmail.com

                Specialty section: This article was submitted to Microbial Immunology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2017.00485
                5403899
                28487699
                ae94a9a7-51ad-4d15-bb5b-f2529c22cc68
                Copyright © 2017 Fu, Browne, Killick and Mulcahy.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 19 January 2017
                : 07 April 2017
                Page count
                Figures: 5, Tables: 3, Equations: 0, References: 66, Pages: 15, Words: 10349
                Funding
                Funded by: Seventh Framework Programme 10.13039/501100004963
                Award ID: FP7-KBBE-2010-4 265862
                Funded by: Horizon 2020 10.13039/501100007601
                Award ID: 635408
                Funded by: Science Foundation Ireland 10.13039/501100001602
                Award ID: 14/IA/2304
                Categories
                Immunology
                Original Research

                Immunology
                fasciola hepatica,peripheral blood mononuclear cells,innate immunity,toll-like receptor,apoptosis,b-cell receptor

                Comments

                Comment on this article