41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The systemic nature of CKD

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic kidney disease (CKD) affects numerous organs and systems, which in turn have effects on kidney function. This Review provides an overview of CKD as a systemic disease and discusses the multidirectional links between the kidney, bone, nervous and immune systems, and metabolism.

          Related collections

          Most cited references276

          • Record: found
          • Abstract: found
          • Article: not found

          Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease

          Metabolomics studies hold promise for discovery of pathways linked to disease processes. Cardiovascular disease (CVD) represents the leading cause of death and morbidity worldwide. A metabolomics approach was used to generate unbiased small molecule metabolic profiles in plasma that predict risk for CVD. Three metabolites of the dietary lipid phosphatidylcholine, namely choline, trimethylamine N-oxide (TMAO), and betaine, were identified and then shown to predict risk for CVD in an independent large clinical cohort. Dietary supplementation of mice with choline, TMAO or betaine promoted up-regulation of multiple macrophage scavenger receptors linked to atherosclerosis, and supplementation with choline or TMAO promoted atherosclerosis. Studies using germ-free mice confirmed a critical role for dietary choline and gut flora in TMAO production, augmented macrophage cholesterol accumulation and foam cell formation. Suppression of intestinal microflora in atherosclerosis-prone mice inhibited dietary choline-enhanced atherosclerosis. Genetic variations controlling expression of flavin monooxygenases (FMOs), an enzymatic source of TMAO, segregated with atherosclerosis in hyperlipidemic mice. Discovery of a relationship between gut flora-dependent metabolism of dietary phosphatidylcholine and CVD pathogenesis provides opportunities for development of both novel diagnostic tests and therapeutic approaches for atherosclerotic heart disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis

            Intestinal microbiota metabolism of choline/phosphatidylcholine produces trimethylamine (TMA), which is further metabolized to a proatherogenic species, trimethylamine-N-oxide (TMAO). Herein we demonstrate that intestinal microbiota metabolism of dietary L-carnitine, a trimethylamine abundant in red meat, also produces TMAO and accelerates atherosclerosis. Omnivorous subjects are shown to produce significantly more TMAO than vegans/vegetarians following ingestion of L-carnitine through a microbiota-dependent mechanism. Specific bacterial taxa in human feces are shown to associate with both plasma TMAO and dietary status. Plasma L-carnitine levels in subjects undergoing cardiac evaluation (n = 2,595) predict increased risks for both prevalent cardiovascular disease (CVD) and incident major adverse cardiac events (MI, stroke or death), but only among subjects with concurrently high TMAO levels. Chronic dietary L-carnitine supplementation in mice significantly altered cecal microbial composition, markedly enhanced synthesis of TMA/TMAO, and increased atherosclerosis, but not following suppression of intestinal microbiota. Dietary supplementation of TMAO, or either carnitine or choline in mice with intact intestinal microbiota, significantly reduced reverse cholesterol transport in vivo. Intestinal microbiota may thus participate in the well-established link between increased red meat consumption and CVD risk.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites.

              Although it has long been recognized that the enteric community of bacteria that inhabit the human distal intestinal track broadly impacts human health, the biochemical details that underlie these effects remain largely undefined. Here, we report a broad MS-based metabolomics study that demonstrates a surprisingly large effect of the gut "microbiome" on mammalian blood metabolites. Plasma extracts from germ-free mice were compared with samples from conventional (conv) animals by using various MS-based methods. Hundreds of features were detected in only 1 sample set, with the majority of these being unique to the conv animals, whereas approximately 10% of all features observed in both sample sets showed significant changes in their relative signal intensity. Amino acid metabolites were particularly affected. For example, the bacterial-mediated production of bioactive indole-containing metabolites derived from tryptophan such as indoxyl sulfate and the antioxidant indole-3-propionic acid (IPA) was impacted. Production of IPA was shown to be completely dependent on the presence of gut microflora and could be established by colonization with the bacterium Clostridium sporogenes. Multiple organic acids containing phenyl groups were also greatly increased in the presence of gut microbes. A broad, drug-like phase II metabolic response of the host to metabolites generated by the microbiome was observed, suggesting that the gut microflora has a direct impact on the drug metabolism capacity of the host. Together, these results suggest a significant interplay between bacterial and mammalian metabolism.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Nephrology
                Nat Rev Nephrol
                Springer Nature
                1759-5061
                1759-507X
                April 24 2017
                April 24 2017
                :
                :
                Article
                10.1038/nrneph.2017.52
                28435157
                aea0204f-18fa-43a9-a92a-707272553933
                © 2017
                History

                Comments

                Comment on this article