31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reduced diversity and increased virulence-gene carriage in intestinal enterobacteria of coeliac children

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Coeliac disease is an immune-mediated enteropathology triggered by the ingestion of cereal gluten proteins. This disorder is associated with imbalances in the composition of the gut microbiota that could be involved in its pathogenesis. The aim of the present study was to determine whether intestinal Enterobacteriaceae populations of active and non-active coeliac patients and healthy children differ in diversity and virulence-gene carriage, so as to establish a possible link between the pathogenic potential of enterobacteria and the disease.

          Methods

          Enterobacteriaceae clones were isolated on VRBD agar from faecal samples of 31 subjects (10 active coeliac patients, 10 symptom-free coeliac patients and 11 healthy controls) and identified at species level by the API 20E system. Escherichia coli clones were classified into four phylogenetic groups A, B1, B2 and D and the prevalence of eight virulence-associated genes (type-1 fimbriae [ fimA], P fimbriae [ papC], S fimbriae [ sfaD/E], Dr haemagglutinin [ draA], haemolysin [ hlyA], capsule K1 [ neuB], capsule K5 [ KfiC] and aerobactin [ iutA]) was determined by multiplex PCR.

          Results

          A total of 155 Enterobacteriaceae clones were isolated. Non- E. coli clones were more commonly isolated in healthy children than in coeliac patients. The four phylogenetic E. coli groups were equally distributed in healthy children, while in both coeliac patients most commensal isolates belonged to group A. Within the virulent groups, B2 was the most prevalent in active coeliac disease children, while D was the most prevalent in non-active coeliac patients. E coli clones of the virulent phylogenetic groups (B2+D) from active and non-active coeliac patients carried a higher number of virulence genes than those from healthy individuals. Prevalence of P fimbriae ( papC), capsule K5 ( sfaD/E) and haemolysin ( hlyA) genes was higher in E. coli isolated from active and non-active coeliac children than in those from control subjects.

          Conclusion

          This study has demonstrated that virulence features of the enteric microbiota are linked to coeliac disease.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease.

          The composition and spatial organization of the mucosal flora in biopsy specimens from patients with inflammatory bowel disease (IBD; either Crohn's disease or ulcerative colitis), self-limiting colitis, irritable-bowel syndrome (IBS), and healthy controls were investigated by using a broad range of fluorescent bacterial group-specific rRNA-targeted oligonucleotide probes. Each group included 20 subjects. Ten patients who had IBD and who were being treated with antibiotics were also studied. Use of nonaqueous Carnoy fixative to preserve the mucus layer was crucial for detection of bacteria adherent to the mucosal surface (mucosal bacteria). No biofilm was detectable in formalin-fixed biopsy specimens. Mucosal bacteria were found at concentrations greater than 10(9)/ml in 90 to 95% of IBD patients, 95% of patients with self-limiting colitis, 65% of IBS patients, and 35% of healthy controls. The mean density of the mucosal biofilm was 2 powers higher in IBD patients than in patients with IBS or controls, and bacteria were mostly adherent. Bacteroides fragilis was responsible for >60% of the biofilm mass in patients with IBD but for only 30% of the biofilm mass in patients with self-limiting colitis and 40% of the biofilm in IBS patients but for <15% of the biofilm in IBD patients. In patients treated with (5-ASA) or antibiotics, the biofilm could be detected with 4,6-diamidino-2-phenylindole but did not hybridize with fluorescence in situ hybridization probes. A Bacteroides fragilis biofilm is the main feature of IBD. This was not previously recognized due to a lack of appropriate tissue fixation. Both 5-ASA and antibiotics suppress but do not eliminate the adherent biofilm.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interactions and competition within the microbial community of the human colon: links between diet and health.

            The microbiota of the human intestinal tract play an important role in health, in particular by mediating many of the effects of diet upon gut health. Surveys of 16S rRNA sequence diversity in the human colon have emphasized the low proportion of sequences that match cultured bacterial species. This may reflect limited recent effort on cultivation rather than inherent unculturability, however, as anaerobic isolation methods can apparently recover a wide range of the diversity found. A combination of information from representative cultures, molecular tools for enumeration and tracking of bacterial metabolites offers the most powerful route to understanding the roles played by different groups of bacteria in the gut ecosystem. Progress is being made for example in defining key functional groups including primary colonizers of insoluble dietary substrates, and major contributors to metabolites such as butyrate that influence the health of the gut mucosa. There is increasing evidence that bacterial populations in the large intestine respond to changes in diet, in particular to the type and quantity of dietary carbohydrate. A general consequence of increased carbohydrate consumption is to reduce the pH of the gut lumen, which is likely to play a major role in determining bacterial metabolism and competition. Oligosaccharides used as dietary prebiotics must inevitably have complex effects upon the bacterial community that include non-target organisms and the consequences of metabolic cross-feeding and changes in the gut environment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diversity of the human gastrointestinal tract microbiota revisited.

              Since the early days of microbiology, more than a century ago, representatives of over 400 different microbial species have been isolated and fully characterized from human gastrointestinal samples. However, during the past decade molecular ecological studies based on ribosomal RNA (rRNA) sequences have revealed that cultivation has been able only to access a small fraction of the microbial diversity within the gastrointestinal tract. The increasing number of deposited rRNA sequences calls for the setting up a curated database that allows handling of the excessive degree of redundancy that threatens the usability of public databases. The integration of data from cultivation-based studies and molecular inventories of small subunit (SSU) rRNA diversity, presented here for the first time, provides a systematic framework of the microbial diversity in the human gastrointestinal tract of more than 1000 different species-level phylogenetic types (phylotypes). Such knowledge is essential for the design of high-throughput approaches such as phylogenetic DNA microarrays for the comprehensive analysis of gastrointestinal tract microbiota at multiple levels of taxonomic resolution. Development of such approaches is likely to be pivotal to generating novel insights in microbiota functionality in health and disease.
                Bookmark

                Author and article information

                Journal
                BMC Gastroenterol
                BMC Gastroenterology
                BioMed Central
                1471-230X
                2008
                4 November 2008
                : 8
                : 50
                Affiliations
                [1 ]Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Apartado 73, 46100 Burjassot, Valencia, Spain
                [2 ]Hospital Universitario La Fe, Avenida Campanar 21, 40009 Valencia, Spain
                [3 ]Hospital General Universitario, Avenida Tres Cruces s/n 46014 Valencia, Spain
                Article
                1471-230X-8-50
                10.1186/1471-230X-8-50
                2615025
                18983674
                aec94553-6831-4938-afc2-cd04eeb60f52
                Copyright © 2008 Sánchez et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 May 2008
                : 4 November 2008
                Categories
                Research Article

                Gastroenterology & Hepatology
                Gastroenterology & Hepatology

                Comments

                Comment on this article