4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Dynamical conductivity in the topological nodal-line semimetal ZrSiS

      ,
      Physical Review B
      American Physical Society (APS)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials

          Quantum ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). Quantum ESPRESSO stands for "opEn Source Package for Research in Electronic Structure, Simulation, and Optimization". It is freely available to researchers around the world under the terms of the GNU General Public License. Quantum ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively-parallel architectures, and a great effort being devoted to user friendliness. Quantum ESPRESSO is evolving towards a distribution of independent and inter-operable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Electronic Structure of Pyrochlore Iridates: From Topological Dirac Metal to Mott Insulator

            In 5d transition metal oxides such as the iridates, novel properties arise from the interplay of electron correlations and spin-orbit interactions. We investigate the electronic structure of the pyrochlore iridates, (such as Y\(_{2}\)Ir\(_{2}\)O\(_{7}\)) using density functional theory, LDA+U method, and effective low energy models. A remarkably rich phase diagram emerges on tuning the correlation strength U. The Ir magnetic moment are always found to be non-collinearly ordered. However, the ground state changes from a magnetic metal at weak U, to a Mott insulator at large U. Most interestingly, the intermediate U regime is found to be a Dirac semi-metal, with vanishing density of states at the Fermi energy. It also exhibits topological properties - manifested by special surface states in the form of Fermi arcs, that connect the bulk Dirac points. This Dirac phase, a three dimensional analog of graphene, is proposed as the ground state of Y\(_{2}\)Ir\(_{2}\)O\(_{7}\) and related compounds. A narrow window of magnetic `axion' insulator, with axion parameter \(\theta=\pi\), may also be present at intermediate U. An applied magnetic field induces ferromagnetic order and a metallic ground state.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Weyl Semimetal in a Topological Insulator Multilayer

              We propose a simple realization of the three-dimensional (3D) Weyl semimetal phase, utilizing a multilayer structure, composed of identical thin films of a magnetically-doped 3D topological insulator (TI), separated by ordinary-insulator spacer layers. We show that the phase diagram of this system contains a Weyl semimetal phase of the simplest possible kind, with only two Dirac nodes of opposite chirality, separated in momentum space, in its bandstructure. This particular type of Weyl semimetal has a finite anomalous Hall conductivity, chiral edge states, and occurs as an intermediate phase between an ordinary insulator and a 3D quantum anomalous Hall insulator with a quantized Hall conductivity, equal to \(e^2/h\) per TI layer. We find that the Weyl semimetal has a nonzero DC conductivity at zero temperature and is thus an unusual metallic phase, characterized by a finite anomalous Hall conductivity and topologically-protected edge states.
                Bookmark

                Author and article information

                Journal
                PRBMDO
                Physical Review B
                Phys. Rev. B
                American Physical Society (APS)
                2469-9950
                2469-9969
                September 2018
                September 4 2018
                : 98
                : 12
                Article
                10.1103/PhysRevB.98.125201
                aed4edb6-4111-4ae6-84cc-2a313658f2ca
                © 2018

                https://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article