7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Functional anatomy of macaque striate cortex. III. Color

      other

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Using spatially diffuse stimuli (or sinusoidal gratings of very low spatial frequency), levels of 14C-2-deoxy-d-glucose (DG) uptake produced by color-varying stimuli are much greater than those produced by luminance-varying stimuli in macaque striate cortex. Such a difference in DG results is consistent with previous psychophysical and electrophysiological results from man and monkey. In DG experiments with color-varying gratings of low and middle spatial frequencies, or with spatially diffuse color variations, DG uptake was highest in the cytochrome oxidase blobs, as was also seen with low-spatial-frequency luminance gratings. High-spatial-frequency, color-varying uptake patterns were shifted to cover both blob and interblob regions in a manner similar to that of the patterns obtained with middle-spatial- frequency luminance stimuli. However, in no instance did chromatic gratings produce uptake restricted to the interblob regions, as with the pattern seen with the highest-spatial-frequency luminance gratings. Thus, DG uptake is relatively higher in the interblob regions when comparing luminance with color-varying gratings that are otherwise similar. It was also possible to show DG evidence for receptive-field double-opponency in the upper-layer blobs, but color sensitivity in layer 4Cb appears single-opponent. The DG results suggest that color sensitivity is also high in the lower-layer (layers 5 + 6) blobs, and that many layer 5 receptive fields are double-opponent. Striate layers 4Ca and 4B-appeared color-insensitive in a wide variety of DG tests; this supports the idea of a color-insensitive stream running from the magnocellular LGN layers through striate layers 4Ca and 4B to extrastriate areas MT and V3. There was also a major effect due to wavelength: long and short wavelengths produced much more uptake than did middle wavelengths, even when all colors were equated for luminance and saturation. No variation with eccentricity was seen in cortical color sensitivity, at least between 0 degrees and 10 degrees.

          Related collections

          Author and article information

          Journal
          J Neurosci
          J. Neurosci
          jneuro
          The Journal of Neuroscience
          Society for Neuroscience
          0270-6474
          1529-2401
          1 May 1988
          : 8
          : 5
          : 1569-1593
          Affiliations
          Department of Psychology, University of California, Berkeley 94720.
          Article
          PMC6569202 PMC6569202 6569202 jneuro;8/5/1569
          10.1523/JNEUROSCI.08-05-01569.1988
          6569202
          3367211
          aed71e21-5a30-4833-8499-d88def824813
          © 1988 by Society for Neuroscience
          History
          Categories
          Articles
          Custom metadata
          8/5/1569
          1569

          Comments

          Comment on this article