1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biomass‐Derived Materials for Electrochemical Energy Storage and Conversion: Overview and Perspectives

      1 , 1 , 2 , 2 , 1
      ENERGY & ENVIRONMENTAL MATERIALS
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references103

          • Record: found
          • Abstract: found
          • Article: not found

          Li-O2 and Li-S batteries with high energy storage.

          Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Li-air (O(2)) and Li-S. The energy that can be stored in Li-air (based on aqueous or non-aqueous electrolytes) and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li-air and Li-S justify the continued research effort that will be needed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Towards greener and more sustainable batteries for electrical energy storage.

            Ever-growing energy needs and depleting fossil-fuel resources demand the pursuit of sustainable energy alternatives, including both renewable energy sources and sustainable storage technologies. It is therefore essential to incorporate material abundance, eco-efficient synthetic processes and life-cycle analysis into the design of new electrochemical storage systems. At present, a few existing technologies address these issues, but in each case, fundamental and technological hurdles remain to be overcome. Here we provide an overview of the current state of energy storage from a sustainability perspective. We introduce the notion of sustainability through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability. With the same themes in mind, we also highlight current and future electrochemical storage systems beyond lithium-ion batteries. The complexity and importance of recycling battery materials is also discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction.

              The large-scale practical application of fuel cells will be difficult to realize if the expensive platinum-based electrocatalysts for oxygen reduction reactions (ORRs) cannot be replaced by other efficient, low-cost, and stable electrodes. Here, we report that vertically aligned nitrogen-containing carbon nanotubes (VA-NCNTs) can act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction in alkaline fuel cells. In air-saturated 0.1 molar potassium hydroxide, we observed a steady-state output potential of -80 millivolts and a current density of 4.1 milliamps per square centimeter at -0.22 volts, compared with -85 millivolts and 1.1 milliamps per square centimeter at -0.20 volts for a platinum-carbon electrode. The incorporation of electron-accepting nitrogen atoms in the conjugated nanotube carbon plane appears to impart a relatively high positive charge density on adjacent carbon atoms. This effect, coupled with aligning the NCNTs, provides a four-electron pathway for the ORR on VA-NCNTs with a superb performance.
                Bookmark

                Author and article information

                Contributors
                Journal
                ENERGY & ENVIRONMENTAL MATERIALS
                Energy Environ. Mater.
                Wiley
                2575-0356
                2575-0356
                March 05 2019
                March 2019
                March 28 2019
                March 2019
                : 2
                : 1
                : 55-67
                Affiliations
                [1 ]School of Resource and Environmental Sciences Shenzhen Research Institute Wuhan University 299 Bayi Road 430072 Wuhan China
                [2 ]New Materials Institute The University of Nottingham Ningbo China 315100 Ningbo China
                Article
                10.1002/eem2.12030
                aed8e758-c612-4c41-9d35-4f59d72f2f95
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article