6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analysis of the metabolic properties of maintenance hemodialysis patients with glucose-added dialysis based on high performance liquid chromatography quadrupole time-of-flight mass spectrometry

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The purpose of this study was to compare the metabolic properties of maintenance hemodialysis patients treated with glucose-containing and glucose-free dialysate using metabonomics. Pre- and post-dialysis serum samples from group G (−) using glucose-free dialysate, and group G (+) using glucose-added dialysate (glucose levels were 5.5 mmol/L) were analyzed and tested with high performance liquid chromatography quadrupole time-of-flight mass spectrometry. Orthogonal signal correction–partial least squares discriminate analysis revealed a significant difference in the post-dialysis metabolic properties between samples from the G (−) and G (+) groups, and concentrations of leucine and dihydroxyprostaglandin F2α were higher in the G (+) group than in the G (−) group. However, markers of reactive lipid mobilization and amino acid release, such as bile acids, aspartate, and valine, were lower in the G (+) group than in the G (−) group. There were no significant differences in excitatory neurotransmitters aspartate and phosphorylated anandamide. Use of liquid chromatography-tandem mass spectrometry metabonomics indicated that using glucose-added dialysate was superior to glucose-free dialysate in the protection of the central nervous system of maintenance hemodialysis patients, but had potential risks in stimulating oxidative stress.

          Related collections

          Most cited references 20

          • Record: found
          • Abstract: found
          • Article: not found

          Bile acids: regulation of synthesis.

           John Chiang (2009)
          Bile acids are physiological detergents that generate bile flow and facilitate intestinal absorption and transport of lipids, nutrients, and vitamins. Bile acids also are signaling molecules and inflammatory agents that rapidly activate nuclear receptors and cell signaling pathways that regulate lipid, glucose, and energy metabolism. The enterohepatic circulation of bile acids exerts important physiological functions not only in feedback inhibition of bile acid synthesis but also in control of whole-body lipid homeostasis. In the liver, bile acids activate a nuclear receptor, farnesoid X receptor (FXR), that induces an atypical nuclear receptor small heterodimer partner, which subsequently inhibits nuclear receptors, liver-related homolog-1, and hepatocyte nuclear factor 4alpha and results in inhibiting transcription of the critical regulatory gene in bile acid synthesis, cholesterol 7alpha-hydroxylase (CYP7A1). In the intestine, FXR induces an intestinal hormone, fibroblast growth factor 15 (FGF15; or FGF19 in human), which activates hepatic FGF receptor 4 (FGFR4) signaling to inhibit bile acid synthesis. However, the mechanism by which FXR/FGF19/FGFR4 signaling inhibits CYP7A1 remains unknown. Bile acids are able to induce FGF19 in human hepatocytes, and the FGF19 autocrine pathway may exist in the human livers. Bile acids and bile acid receptors are therapeutic targets for development of drugs for treatment of cholestatic liver diseases, fatty liver diseases, diabetes, obesity, and metabolic syndrome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hypoglycemia in diabetes.

             P Cryer,  S Davis,  H Shamoon (2003)
            Iatrogenic hypoglycemia causes recurrent morbidity in most people with type 1 diabetes and many with type 2 diabetes, and it is sometimes fatal. The barrier of hypoglycemia generally precludes maintenance of euglycemia over a lifetime of diabetes and thus precludes full realization of euglycemia's long-term benefits. While the clinical presentation is often characteristic, particularly for the experienced individual with diabetes, the neurogenic and neuroglycopenic symptoms of hypoglycemia are nonspecific and relatively insensitive; therefore, many episodes are not recognized. Hypoglycemia can result from exogenous or endogenous insulin excess alone. However, iatrogenic hypoglycemia is typically the result of the interplay of absolute or relative insulin excess and compromised glucose counterregulation in type 1 and advanced type 2 diabetes. Decrements in insulin, increments in glucagon, and, absent the latter, increments in epinephrine stand high in the hierarchy of redundant glucose counterregulatory factors that normally prevent or rapidly correct hypoglycemia. In insulin-deficient diabetes (exogenous) insulin levels do not decrease as glucose levels fall, and the combination of deficient glucagon and epinephrine responses causes defective glucose counterregulation. Reduced sympathoadrenal responses cause hypoglycemia unawareness. The concept of hypoglycemia-associated autonomic failure in diabetes posits that recent antecedent hypoglycemia causes both defective glucose counterregulation and hypoglycemia unawareness. By shifting glycemic thresholds for the sympathoadrenal (including epinephrine) and the resulting neurogenic responses to lower plasma glucose concentrations, antecedent hypoglycemia leads to a vicious cycle of recurrent hypoglycemia and further impairment of glucose counterregulation. Thus, short-term avoidance of hypoglycemia reverses hypoglycemia unawareness in most affected patients. The clinical approach to minimizing hypoglycemia while improving glycemic control includes 1) addressing the issue, 2) applying the principles of aggressive glycemic therapy, including flexible and individualized drug regimens, and 3) considering the risk factors for iatrogenic hypoglycemia. The latter include factors that result in absolute or relative insulin excess: drug dose, timing, and type; patterns of food ingestion and exercise; interactions with alcohol and other drugs; and altered sensitivity to or clearance of insulin. They also include factors that are clinical surrogates of compromised glucose counterregulation: endogenous insulin deficiency; history of severe hypoglycemia, hypoglycemia unawareness, or both; and aggressive glycemic therapy per se, as evidenced by lower HbA(1c) levels, lower glycemic goals, or both. In a patient with hypoglycemia unawareness (which implies recurrent hypoglycemia) a 2- to 3-week period of scrupulous avoidance of hypoglycemia is advisable. Pending the prevention and cure of diabetes or the development of methods that provide glucose-regulated insulin replacement or secretion, we need to learn to replace insulin in a much more physiological fashion, to prevent, correct, or compensate for compromised glucose counterregulation, or both if we are to achieve near-euglycemia safely in most people with diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intermittent high glucose enhances ICAM-1, VCAM-1 and E-selectin expression in human umbilical vein endothelial cells in culture: the distinct role of protein kinase C and mitochondrial superoxide production.

              In this study the effects of stable and intermittent high glucose concentrations on ICAM-1, VCAM-1 and E-selectin production, PKC activity and PKCbetaI, betaII and delta isoforms expression in cultured HUVEC have been examined. In stable high glucose ICAM-1, VCAM-1 and E-selectin concentration and mRNA expression increased, and this effect was even more evident in intermittent high glucose. PKC activity increased in fluctuating glucose compared to stable high glucose, due to an over-expression of betaI, betaII and delta isoforms. ICAM-1, VCAM-1 and E-selectin, after the adding of total PKC inhibitor bisindolylmaleimide-I (BIMI-I) and LY379196, a specific inhibitor of PKCbeta, were equally reduced. 8-Hydroxydeoxyguanosine (8-OHdG), a sensitive indicator of oxidative damage to DNA, increased in stable and even more in intermittent high glucose and was reduced by both BIMI-I and LY379196. However, when thenoyltrifluoroacetone (TTFA), an inhibitor of mitochondrial complex II and the SOD mimetic Mn(III)tetrakis(4-benzoic acid) porphyrin chloride (MnTBAP) were added, all adhesion molecules, any PKC isoforms expression and 8-hydroxydeoxyguanosine were normalized in both constant and oscillating glucose. In conclusion intermittent high glucose induces a greater expression of the adhesion molecules than stable high glucose; this effect seems to be related to an activation of PKCbeta, but completely dependent from mitochondrial free radicals over-production.
                Bookmark

                Author and article information

                Journal
                Ther Clin Risk Manag
                Ther Clin Risk Manag
                Therapeutics and Clinical Risk Management
                Therapeutics and Clinical Risk Management
                Dove Medical Press
                1176-6336
                1178-203X
                2013
                2013
                29 October 2013
                : 9
                : 417-425
                Affiliations
                [1 ]Xi’xiang People’s Hospital Affiliated to Guangdong Medical College, Shenzhen, People’s Republic of China
                [2 ]Nephrology Department of the First Hospital Affiliated to Ji’nan University, Guangzhou, People’s Republic of China
                [3 ]First Hospital of Guangzhou University of Chinese Medicine, People’s Republic of China
                [4 ]Assisted Reproductive Centre of the First Hospital Affiliated to Ji’nan University, Guangzhou, People’s Republic of China
                Author notes
                Correspondence: Yu Meng, Nephrology Department, First Hospital Affiliated to Ji’nan University, Guangzhou 510000, People’s Republic of China, Email yumeng_dialysis@ 123456163.com ; elajob@ 123456126.com
                Article
                tcrm-9-417
                10.2147/TCRM.S49634
                3814896
                © 2013 Cui et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Medicine

                hemodialysis, metabonomics, glucose-added dialysate

                Comments

                Comment on this article