15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inflammation in the avian spleen: timing is everything

      research-article
      1 , 1 , 1 ,
      BMC Molecular Biology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The synchrony of an organism with both its external and internal environment is critical to well-being and survival. As a result, organisms display daily cycles of physiology and behavior termed circadian rhythms. At the cellular level, circadian rhythms originate via interlocked autoregulatory feedback loops consisting of circadian clock genes and their proteins. These regulatory loops provide the molecular framework that enables the intracellular circadian timing system necessary to generate and maintain subsequent 24 hr rhythms. In the present study we examine the daily control of circadian clock genes and regulation of the inflammatory response by the circadian clock in the spleen.

          Results

          Our results reveal that circadian clock genes as well as proinflammatory cytokines, including Tnfά and IL-1β, display rhythmic oscillations of mRNA abundance over a 24 hr cycle. LPS-induced systemic inflammation applied at midday vs. midnight reveals a differential response of proinflammatory cytokine induction in the spleen, suggesting a daily rhythm of inflammation. Exogenous melatonin administration at midday prior to LPS stimulation conveys pleiotropic effects, enhancing and repressing inflammatory cytokines, indicating melatonin functions as both a pro- and anti-inflammatory molecule in the spleen.

          Conclusion

          In summary, a daily oscillation of circadian clock genes and inflammatory cytokines as well as the ability of melatonin to function as a daily mediator of inflammation provides valuable information to aid in deciphering how the circadian timing system regulates immune function at the molecular level. However, further research is needed to clarify the precise mechanisms by which the circadian clock and melatonin have an impact upon daily immune functions in the periphery.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Time zones: a comparative genetics of circadian clocks.

          M Young, S. Kay (2001)
          The circadian clock is a widespread cellular mechanism that underlies diverse rhythmic functions in organisms from bacteria and fungi, to plants and animals. Intense genetic analysis during recent years has uncovered many of the components and molecular mechanisms comprising these clocks. Although autoregulatory genetic networks are a consistent feature in the design of all clocks, the weight of evidence favours their independent evolutionary origins in different kingdoms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock.

            The Drosophila circadian clock consists of two interlocked transcriptional feedback loops. In one loop, dCLOCK/CYCLE activates period expression, and PERIOD protein then inhibits dCLOCK/CYCLE activity. dClock is also rhythmically transcribed, but its regulators are unknown. vrille (vri) and Par Domain Protein 1 (Pdp1) encode related transcription factors whose expression is directly activated by dCLOCK/CYCLE. We show here that VRI and PDP1 proteins feed back and directly regulate dClock expression. Repression of dClock by VRI is separated from activation by PDP1 since VRI levels peak 3-6 hours before PDP1. Rhythmic vri transcription is required for molecular rhythms, and here we show that the clock stops in a Pdp1 null mutant, identifying Pdp1 as an essential clock gene. Thus, VRI and PDP1, together with dClock itself, comprise a second feedback loop in the Drosophila clock that gives rhythmic expression of dClock, and probably of other genes, to generate accurate circadian rhythms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Circadian clocks: regulators of endocrine and metabolic rhythms.

              Daily and seasonal rhythms in the endocrine system are co-ordinated by a hypothalamic pacemaker, the suprachiasmatic nuclei (SCN) that is synchronised to solar time by direct retinal afferents. Individual SCN neurons are circadian clocks, their intrinsic oscillator consisting of a series of interlinked autoregulatory transcriptional/post-translational feedback loops incorporating Period (Per) and Cryptochrome (Cry) genes. Mutations that alter the rate of transcription of Per and Cry genes or the stability of Per and Cry proteins affect clock speed. Molecular timekeeping in SCN neurons is synchronised and sustained by interneuronal neuropeptidergic signals. A molecular clock mechanism comparable to that of the SCN is present in most major organ systems. These tissue clocks are synchronised by endocrine, autonomic and behavioural cues that are dependent on the SCN, and in turn they drive the circadian expression of local transcriptomes, thereby co-ordinating circadian metabolism and physiology. Rhythmic glucocorticoid signalling is a prominent mediator of SCN output and internal synchroniser. The role of local SCN-synchronised clocks in controlling vital processes, including xenobiotic detoxification, cell division and nutrient metabolism, is essential to health, and disturbances to circadian timing arising from modern working schedules are becoming recognised as an increasingly relevant factor in major systemic illness. Moreover, the newly identified molecular components of circadian control systems provide novel avenues for therapeutic intervention.
                Bookmark

                Author and article information

                Journal
                BMC Mol Biol
                BMC Molecular Biology
                BioMed Central
                1471-2199
                2010
                31 December 2010
                : 11
                : 104
                Affiliations
                [1 ]From The Center for Biological Clocks Research, Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA
                Article
                1471-2199-11-104
                10.1186/1471-2199-11-104
                3027090
                21194436
                aedd294e-986e-41a4-b64f-44cb03ca7c50
                Copyright ©2010 Naidu et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<url>http://creativecommons.org/licenses/by/2.0</url>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 June 2010
                : 31 December 2010
                Categories
                Research Article

                Molecular biology
                Molecular biology

                Comments

                Comment on this article