6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Involvement of GJA1 and Gap Junctional Intercellular Communication between Cumulus Cells and Oocytes from Women with PCOS

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polycystic ovary syndrome (PCOS) is a common female endocrine system disease that affects 17.8% of women of reproductive age and leads to infertility, obesity, glucose metabolic disorders, cardiovascular disease, and body-mind problems. However, the etiology of PCOS remains unclear. Follicular growth is disrupted as a result of ovarian hyperandrogenism and distorted intraovarian paracrine signaling in women with PCOS. Microcommunication between oocytes and cumulus cells plays a critical role in folliculogenesis. Gap junction alpha 1 (GJA1) plays a crucial role in the developing follicles by forming communication channels between cumulus cells and oocytes, but this has not yet been reported in women with PCOS. Therefore, we aimed to study the role of GJA1 in the microcommunication between oocytes and cumulus cells in women with PCOS. In our study, cumulus cell-oocyte complexes (COCs) from women were isolated via ultrasound-guided vaginal puncture, and oocytes were selected from COCs and categorized based on 3 oocyte maturation stages. Then, RT-qPCR and immunofluorescence analysis were performed to detect both the gene expression and protein of GJA1 in oocytes from women with and without PCOS. There was no statistically significant difference in age and BMI (body mass index), but patients with PCOS had a higher ratio of basic LH/FSH (luteinizing hormone/follicle-stimulating hormone), androstenedione, and total ovarian volume. The qRT-PCR results showed higher gene expression of GJA1 in oocytes without PCOS at the germinal vesicle (GV) stage compared with that of oocytes from women with PCOS. Immunofluorescence analysis showed that the expression level of GJA1 in oocytes from women with PCOS was very weak compared with that of oocytes from women without PCOS. In conclusion, GJA1 may play a critical role in the development of oogenesis arrest in women with PCOS throughout the oogenesis processes, including oogenesis and oocyte maturation.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          EGF-like growth factors as mediators of LH action in the ovulatory follicle.

          Before ovulation in mammals, a cascade of events resembling an inflammatory and/or tissue remodeling process is triggered by luteinizing hormone (LH) in the ovarian follicle. Many LH effects, however, are thought to be indirect because of the restricted expression of its receptor. Here, we demonstrate that LH stimulation induces the transient and sequential expression of the epidermal growth factor (EGF) family members amphiregulin, epiregulin, and beta-cellulin. Incubation of follicles with these growth factors recapitulates the morphological and biochemical events triggered by LH, including cumulus expansion and oocyte maturation. Thus, these EGF-related growth factors are paracrine mediators that propagate the LH signal throughout the follicle.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The management of anovulatory infertility in women with polycystic ovary syndrome: an analysis of the evidence to support the development of global WHO guidance.

            Here we describe the consensus guideline methodology, summarise the evidence-based recommendations we provided to the World Health Organisation (WHO) for their consideration in the development of global guidance and present a narrative review on the management of anovulatory infertility in women with polycystic ovary syndrome (PCOS).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes.

              Granulosa cells of mammalian Graafian follicles maintain oocytes in meiotic arrest, which prevents their precocious maturation. We show that mouse mural granulosa cells, which line the follicle wall, express natriuretic peptide precursor type C (Nppc) messenger RNA (mRNA), whereas cumulus cells surrounding oocytes express mRNA of the NPPC receptor NPR2, a guanylyl cyclase. NPPC increased cGMP levels in cumulus cells and oocytes and inhibited meiotic resumption in vitro. Meiotic arrest was not sustained in most Graafian follicles of Nppc or Npr2 mutant mice, and meiosis resumed precociously. Oocyte-derived paracrine factors promoted cumulus cell expression of Npr2 mRNA. Therefore, the granulosa cell ligand NPPC and its receptor NPR2 in cumulus cells prevent precocious meiotic maturation, which is critical for maturation and ovulation synchrony and for normal female fertility.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2020
                28 February 2020
                : 2020
                : 5403904
                Affiliations
                1Department of Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100010, China
                2Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, 230032 Anhui, China
                3Translational Center for Stem Cell Research, Tongji Hospital, Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
                Author notes

                Academic Editor: Enrique Gomez

                Author information
                https://orcid.org/0000-0002-8474-6656
                https://orcid.org/0000-0002-1773-3812
                https://orcid.org/0000-0001-7715-1403
                https://orcid.org/0000-0002-1003-7646
                Article
                10.1155/2020/5403904
                7066426
                32190671
                aee2c5be-4c10-40dd-92e8-426e2602e6f7
                Copyright © 2020 Qiwei Liu et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 December 2019
                : 14 February 2020
                Funding
                Funded by: Capital Medical University
                Award ID: FCYY201813
                Categories
                Research Article

                Comments

                Comment on this article