13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Temporal Viral Genome-Protein Interactions Define Distinct Stages of Productive Herpesviral Infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Herpesviruses utilize multiple mechanisms to redirect host proteins for use in viral processes and to avoid recognition and repression by the host. To investigate dynamic interactions between herpes simplex virus type 1 (HSV-1) DNA and viral and host proteins throughout infection, we developed an approach to identify proteins that associate with the infecting viral genome from nuclear entry through packaging. To accomplish this, virus stocks were prepared in the presence of ethynyl-modified nucleotides to enable covalent tagging of viral genomes after infection for analysis of viral genome-protein interactions by imaging or affinity purification. Affinity purification was combined with stable isotope labeling of amino acids in cell culture (SILAC) mass spectrometry to enable the distinction between proteins that were brought into the cell by the virus or expressed within the infected cell before or during infection. We found that input viral DNA progressed within 6 h through four temporal stages where the genomes sequentially (i) interacted with intrinsic antiviral and DNA damage response proteins, (ii) underwent a robust transcriptional switch mediated largely by ICP4, (iii) engaged in replication, repair, and continued transcription, and then (iv) transitioned to a more transcriptionally inert state engaging de novo-synthesized viral structural components while maintaining interactions with replication proteins. Using a combination of genetic, imaging, and proteomic approaches, we provide a new and temporally compressed view of the HSV-1 life cycle based on input genome-proteome dynamics.

          IMPORTANCE

          Herpesviruses are highly prevalent and ubiquitous human pathogens. Studies of herpesviruses and other viruses have previously been limited by the ability to directly study events that occur on the viral DNA throughout infection. We present a new powerful approach, which allows for the temporal investigation of viral genome-protein interactions at all phases of infection. This work has integrated many results from previous studies with the discovery of novel factors potentially involved in viral infection that may represent new antiviral targets. In addition, the study provides a new view of the HSV-1 life cycle based on genome-proteome dynamics.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          The CRAPome: a Contaminant Repository for Affinity Purification Mass Spectrometry Data

          Affinity purification coupled with mass spectrometry (AP-MS) is now a widely used approach for the identification of protein-protein interactions. However, for any given protein of interest, determining which of the identified polypeptides represent bona fide interactors versus those that are background contaminants (e.g. proteins that interact with the solid-phase support, affinity reagent or epitope tag) is a challenging task. While the standard approach is to identify nonspecific interactions using one or more negative controls, most small-scale AP-MS studies do not capture a complete, accurate background protein set. Fortunately, negative controls are largely bait-independent. Hence, aggregating negative controls from multiple AP-MS studies can increase coverage and improve the characterization of background associated with a given experimental protocol. Here we present the Contaminant Repository for Affinity Purification (the CRAPome) and describe the use of this resource to score protein-protein interactions. The repository (currently available for Homo sapiens and Saccharomyces cerevisiae) and computational tools are freely available online at www.crapome.org.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Mediator complex: a central integrator of transcription.

            The RNA polymerase II (Pol II) enzyme transcribes all protein-coding and most non-coding RNA genes and is globally regulated by Mediator - a large, conformationally flexible protein complex with a variable subunit composition (for example, a four-subunit cyclin-dependent kinase 8 module can reversibly associate with it). These biochemical characteristics are fundamentally important for Mediator's ability to control various processes that are important for transcription, including the organization of chromatin architecture and the regulation of Pol II pre-initiation, initiation, re-initiation, pausing and elongation. Although Mediator exists in all eukaryotes, a variety of Mediator functions seem to be specific to metazoans, which is indicative of more diverse regulatory requirements.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Topics in herpesvirus genomics and evolution.

              Herpesviruses comprise an abundant, widely distributed group of large DNA viruses of humans and other vertebrates, and overall are among the most extensively studied large DNA viruses. Many herpesvirus genome sequences have been determined, and interpreted in terms of gene contents to give detailed views of both ubiquitous and lineage-specific functions. Availability of gene sequences has also enabled evaluations of evolutionary relationships. For herpesviruses of mammals, a robust phylogenetic tree has been constructed, which shows many features characteristic of synchronous development of virus and host lineages over large evolutionary timespans. It has also emerged that three distinct groupings of herpesviruses exist: the first containing viruses with mammals, birds and reptiles as natural hosts; the second containing viruses of amphibians and fish; and the third consisting of a single invertebrate herpesvirus. Within each of the first two groups, the genomes show clear evidence of descent from a common ancestor, but relationships between the three groups are extremely remote. Detailed analyses of capsid structures provide the best evidence for a common origin of the three groups. At a finer level, the structure of the capsid shell protein further suggests an element of common origin between herpesviruses and tailed DNA bacteriophages.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                17 July 2018
                Jul-Aug 2018
                : 9
                : 4
                : e01182-18
                Affiliations
                [a ]Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
                University of Michigan—Ann Arbor
                Author notes
                Address correspondence to Neal A. DeLuca, ndeluca@ 123456pitt.edu .
                Article
                mBio01182-18
                10.1128/mBio.01182-18
                6050965
                30018111
                aee4154e-0193-4562-a58f-a846772d1cfd
                Copyright © 2018 Dembowski and DeLuca.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 30 May 2018
                : 21 June 2018
                Page count
                supplementary-material: 7, Figures: 7, Tables: 0, Equations: 0, References: 61, Pages: 18, Words: 11213
                Funding
                Funded by: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID), https://doi.org/10.13039/100000060;
                Award ID: R01AI030612
                Award Recipient :
                Funded by: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID), https://doi.org/10.13039/100000060;
                Award ID: R01AI044821
                Award Recipient :
                Funded by: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID), https://doi.org/10.13039/100000060;
                Award ID: R21AI137652
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                July/August 2018

                Life sciences
                dna damage,dna repair,icp4,affinity purification,herpes simplex virus,ipond,mediator,transcription

                Comments

                Comment on this article