12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Microfluidic approach for fast labeling optimization and dose-on-demand implementation

      , , , ,  
      Nuclear Medicine and Biology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The diffusion of PET as a pivotal molecular imaging modality has emphasized the need for new positron-emitting radiotracers to be used in diagnostic applications and research. Microfluidic represents an innovative approach, owing to its potential to increase radiochemical productivity in terms of yields, time reduction, precursor consumption and flexible experimental planning. We focused on fluorine-18 labeling and used a microfluidic platform to perform sequential reactions, by using the same batch of (18)F-labeling solution on one or more substrates, during the same experimental session. A solid-phase extraction (SPE) workup procedure was also implemented in the system to provide a repeatable purification step. We were able to quickly optimize the conditions for labeling of ethyl and propyl ditosylate and of a new cannabinoid type 2 (CB2) receptor agonist, CB41. In all substrates, we obtained good incorporation yields (60% to 85%) in short (<90 s) reaction times. Single dosages of the CB2 ligand were sequentially prepared, upon request, in satisfactory quantities and purity for small animal PET scanning. This work demonstrates the usefulness of a microfluidic-based system for a rapid optimization of temperature, flow rate of reactants and their relative ratio in the labeling of different precursors by using the same (18)F-fluoride batch. This approach was used to obtain in sequence several injectable doses of a novel CB2 ligand, thus providing the proof of principle that microfluidic systems permit a dose-on-demand production of new radiotracers. Copyright 2010 Elsevier Inc. All rights reserved.

          Related collections

          Author and article information

          Journal
          Nuclear Medicine and Biology
          Nuclear Medicine and Biology
          Elsevier BV
          09698051
          July 2010
          July 2010
          : 37
          : 5
          : 547-555
          Article
          10.1016/j.nucmedbio.2010.03.006
          20610159
          aee61588-44f8-4cab-9f4b-447fa5797e2f
          © 2010

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article