52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ruminant livestock represent the single largest anthropogenic source of the potent greenhouse gas methane, which is generated by methanogenic archaea residing in ruminant digestive tracts. While differences between individual animals of the same breed in the amount of methane produced have been observed, the basis for this variation remains to be elucidated. To explore the mechanistic basis of this methane production, we measured methane yields from 22 sheep, which revealed that methane yields are a reproducible, quantitative trait. Deep metagenomic and metatranscriptomic sequencing demonstrated a similar abundance of methanogens and methanogenesis pathway genes in high and low methane emitters. However, transcription of methanogenesis pathway genes was substantially increased in sheep with high methane yields. These results identify a discrete set of rumen methanogens whose methanogenesis pathway transcription profiles correlate with methane yields and provide new targets for CH 4 mitigation at the levels of microbiota composition and transcriptional regulation.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            KEGG: kyoto encyclopedia of genes and genomes.

            M Kanehisa (2000)
            KEGG (Kyoto Encyclopedia of Genes and Genomes) is a knowledge base for systematic analysis of gene functions, linking genomic information with higher order functional information. The genomic information is stored in the GENES database, which is a collection of gene catalogs for all the completely sequenced genomes and some partial genomes with up-to-date annotation of gene functions. The higher order functional information is stored in the PATHWAY database, which contains graphical representations of cellular processes, such as metabolism, membrane transport, signal transduction and cell cycle. The PATHWAY database is supplemented by a set of ortholog group tables for the information about conserved subpathways (pathway motifs), which are often encoded by positionally coupled genes on the chromosome and which are especially useful in predicting gene functions. A third database in KEGG is LIGAND for the information about chemical compounds, enzyme molecules and enzymatic reactions. KEGG provides Java graphics tools for browsing genome maps, comparing two genome maps and manipulating expression maps, as well as computational tools for sequence comparison, graph comparison and path computation. The KEGG databases are daily updated and made freely available (http://www. genome.ad.jp/kegg/).
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              QIIME allows analysis of high-throughput community sequencing data.

                Bookmark

                Author and article information

                Journal
                Genome Res
                Genome Res
                genome
                genome
                GENOME
                Genome Research
                Cold Spring Harbor Laboratory Press
                1088-9051
                1549-5469
                September 2014
                : 24
                : 9
                : 1517-1525
                Affiliations
                [1 ]Department of Energy, Joint Genome Institute, Walnut Creek, California 94598, USA;
                [2 ]Genomic Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;
                [3 ]AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand;
                [4 ]School of Natural Sciences, University of California, Merced, California 95343, USA
                Author notes
                Corresponding author: emrubin@ 123456lbl.gov
                Author information
                http://orcid.org/0000-0002-9291-8577
                Article
                9518021
                10.1101/gr.168245.113
                4158751
                24907284
                aee796c3-1d41-48fd-9625-9ba4e21883c4
                © 2014 Shi et al.; Published by Cold Spring Harbor Laboratory Press

                This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 11 October 2013
                : 13 May 2014
                Page count
                Pages: 9
                Categories
                Research

                Comments

                Comment on this article