18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Signaling Events Downstream of AHR Activation That Contribute to Toxic Responses: The Functional Role of an AHR-Dependent Long Noncoding RNA ( slincR) Using the Zebrafish Model

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          A structurally diverse group of chemicals, including dioxins [e.g., 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD)] and polycyclic aromatic hydrocarbons (PAHs), can xenobiotically activate the aryl hydrocarbon receptor (AHR) and contribute to adverse health effects in humans and wildlife. In the zebrafish model, repression of sox9b has a causal role in several AHR-mediated toxic responses, including craniofacial cartilage malformations; however, the mechanism of sox9b repression remains unknown. We previously identified a long noncoding RNA, sox9b long intergenic noncoding RNA ( slincR), which is increased (in an AHR-dependent manner) by multiple AHR ligands and is required for the AHR-activated repression of sox9b.

          Objective:

          Using the zebrafish model, we aimed to enhance our understanding of the signaling events downstream of AHR activation that contribute to toxic responses by identifying: a) whether slincR is enriched on the sox9b locus, b) slincR’s functional contributions to TCDD-induced toxicity, c) PAHs that increase slincR expression, and d) mammalian orthologs of slincR.

          Methods:

          We used capture hybridization analysis of RNA targets (CHART), qRT-PCR, RNA sequencing, morphometric analysis of cartilage structures, and hemorrhaging screens.

          Results:

          The slincR transcript was enriched at the 5′ untranslated region (UTR) of the sox9b locus. Transcriptome profiling and human ortholog analyses identified processes related to skeletal and cartilage development unique to TCDD-exposed controls, and angiogenesis and vasculature development unique to TCDD-exposed zebrafish that were injected with a splice-blocking morpholino targeting slincR. In comparison to TCDD exposed control morphants, slincR morphants exposed to TCDD resulted in abnormal cartilage structures and a smaller percentage of animals displaying the hemorrhaging phenotype. In addition, slincR expression was significantly increased in six out of the sixteen PAHs we screened.

          Conclusion:

          Our study establishes that in zebrafish, slincR is recruited to the sox9b 5′ UTR to repress transcription, can regulate cartilage development, has a causal role in the TCDD-induced hemorrhaging phenotype, and is up-regulated by multiple environmentally relevant PAHs. These findings have important implications for understanding the ligand-specific mechanisms of AHR-mediated toxicity. https://doi.org/10.1289/EHP3281

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          The zebrafish reference genome sequence and its relationship to the human genome.

          Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Small-sample estimation of negative binomial dispersion, with applications to SAGE data.

            We derive a quantile-adjusted conditional maximum likelihood estimator for the dispersion parameter of the negative binomial distribution and compare its performance, in terms of bias, to various other methods. Our estimation scheme outperforms all other methods in very small samples, typical of those from serial analysis of gene expression studies, the motivating data for this study. The impact of dispersion estimation on hypothesis testing is studied. We derive an "exact" test that outperforms the standard approximate asymptotic tests.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Moderated statistical tests for assessing differences in tag abundance.

              Digital gene expression (DGE) technologies measure gene expression by counting sequence tags. They are sensitive technologies for measuring gene expression on a genomic scale, without the need for prior knowledge of the genome sequence. As the cost of sequencing DNA decreases, the number of DGE datasets is expected to grow dramatically. Various tests of differential expression have been proposed for replicated DGE data using binomial, Poisson, negative binomial or pseudo-likelihood (PL) models for the counts, but none of the these are usable when the number of replicates is very small. We develop tests using the negative binomial distribution to model overdispersion relative to the Poisson, and use conditional weighted likelihood to moderate the level of overdispersion across genes. Not only is our strategy applicable even with the smallest number of libraries, but it also proves to be more powerful than previous strategies when more libraries are available. The methodology is equally applicable to other counting technologies, such as proteomic spectral counts. An R package can be accessed from http://bioinf.wehi.edu.au/resources/
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environ. Health Perspect
                EHP
                Environmental Health Perspectives
                Environmental Health Perspectives
                0091-6765
                1552-9924
                6 November 2018
                November 2018
                : 126
                : 11
                : 117002
                Affiliations
                [ 1 ]Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University , Corvallis, Oregon, USA
                Author notes
                Address correspondence to R. L. Tanguay, Dept. of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Oregon State University, 28645 East Hwy 34, Corvallis, OR 97333 USA. Telephone: (541) 737-6514. FAX: (541) 737-0497. Email: robert.tanguay@ 123456oregonstate.edu
                Article
                EHP3281
                10.1289/EHP3281
                6371766
                30398377
                aef1353f-8cc5-4827-96eb-4c5c44c04747

                EHP is an open-access journal published with support from the National Institute of Environmental Health Sciences, National Institutes of Health. All content is public domain unless otherwise noted.

                History
                : 21 December 2017
                : 15 October 2018
                : 16 October 2018
                Categories
                Research

                Public health
                Public health

                Comments

                Comment on this article