12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reactive oxygen species exert opposite effects on Tyr23 phosphorylation of the nuclear and cortical pools of annexin A2

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Annexin A2 (AnxA2) is a multi-functional and -compartmental protein whose subcellular localisation and functions are tightly regulated by its post-translational modifications. AnxA2 and its Tyr23-phosphorylated form (pTyr23AnxA2) are involved in malignant cell transformation, metastasis and angiogenesis. Here, we show that H 2O 2 exerts rapid, simultaneous and opposite effects on the Tyr23 phosphorylation status of AnxA2 in two distinct compartments of rat pheochromocytoma (PC12) cells. Reactive oxygen species induce dephosphorylation of pTyr23AnxA2 located in the PML bodies of the nucleus, whereas AnxA2 associated with F-actin at the cell cortex is Tyr23 phosphorylated. The H 2O 2-induced responses in both compartments are transient and the pTyr23AnxA2 accumulating at the cell cortex is subsequently incorporated into vesicles and then released to the extracellular space. Blocking nuclear export by leptomycin B does not affect the nuclear pool of pTyr23AnxA2, but increases the amount of total AnxA2 in this compartment, indicating that the protein might have several functions in the nucleus. These results suggest that Tyr23 phosphorylation can regulate the function of AnxA2 at distinct subcellular sites.

          Abstract

          Summary: Reactive oxygen species cause two opposite and transient Tyr23-based modifications of annexin A2; its dephosphorylation in the nucleus and phosphorylation at the cell cortex, resulting in release of the protein in exosomes.

          Related collections

          Most cited references99

          • Record: found
          • Abstract: found
          • Article: not found

          Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor.

          A single cell clonal line which responds reversibly to nerve growth factor (NGF) has been established from a transplantable rat adrenal pheochromocytoma. This line, designated PC12, has a homogeneous and near-diploid chromosome number of 40. By 1 week's exposure to NGF, PC12 cells cease to multiply and begin to extend branching varicose processes similar to those produced by sympathetic neurons in primary cell culture. By several weeks of exposure to NGF, the PC12 processes reach 500-1000 mum in length. Removal of NGF is followed by degeneration of processes within 24 hr and by resumption of cell multiplication within 72 hr. PC12 cells grown with or without NGF contain dense core chromaffin-like granules up to 350 nm in diameter. The NGF-treated cells also contain small vesicles which accumulate in process varicosities and endings. PC12 cells synthesize and store the catecholamine neurotransmitters dopamine and norepinephrine. The levels (per mg of protein) of catecholamines and of the their synthetic enzymes in PC12 cells are comparable to or higher than those found in rat adrenals. NGF-treatment of PC12 cells results in no change in the levels of catecholamines or of their synthetic enzymes when expressed on a per cell basis, but does result in a 4- to 6-fold decrease in levels when expressed on a per mg of protein basis. PC12 cells do not synthesize epinephrine and cannot be induced to do so by treatment with dexamethasone. The PC12 cell line should be a useful model system for neurobiological and neurochemical studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Exosomes Communicate Protective Messages during Oxidative Stress; Possible Role of Exosomal Shuttle RNA

            Background Exosomes are small extracellular nanovesicles of endocytic origin that mediate different signals between cells, by surface interactions and by shuttling functional RNA from one cell to another. Exosomes are released by many cells including mast cells, dendritic cells, macrophages, epithelial cells and tumour cells. Exosomes differ compared to their donor cells, not only in size, but also in their RNA, protein and lipid composition. Methodology/Principal Findings In this study, we show that exosomes, released by mouse mast cells exposed to oxidative stress, differ in their mRNA content. Also, we show that these exosomes can influence the response of other cells to oxidative stress by providing recipient cells with a resistance against oxidative stress, observed as an attenuated loss of cell viability. Furthermore, Affymetrix microarray analysis revealed that the exosomal mRNA content not only differs between exosomes and donor cells, but also between exosomes derived from cells grown under different conditions; oxidative stress and normal conditions. Finally, we also show that exposure to UV-light affects the biological functions associated with exosomes released under oxidative stress. Conclusions/Significance These results argue that the exosomal shuttle of RNA is involved in cell-to-cell communication, by influencing the response of recipient cells to an external stress stimulus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation.

              Here, we have studied the activity of a novel protein-tyrosine kinase inhibitor that is selective for the Src family of tyrosine kinases. We have focused our study on the effects of this compound on T cell receptor-induced T cell activation, a process dependent on the activity of the Src kinases Lck and FynT. This compound is a nanomolar inhibitor of Lck and FynT, inhibits anti-CD3-induced protein-tyrosine kinase activity in T cells, demonstrates selectivity for Lck and FynT over ZAP-70, and preferentially inhibits T cell receptor-dependent anti-CD3-induced T cell proliferation over non-T cell receptor-dependent phorbol 12-myristate 13-acetate/interleukin-2 (IL-2)-induced T cell proliferation. Interestingly, this compound selectively inhibits the induction of the IL-2 gene, but not the granulocyte-macrophage colony-stimulating factor or IL-2 receptor genes. This compound offers a useful new tool for examining the role of the Lck and FynT tyrosine kinases versus ZAP-70 in T cell activation as well as the role of other Src family kinases in receptor function.
                Bookmark

                Author and article information

                Journal
                J Cell Sci
                J. Cell. Sci
                JCS
                joces
                Journal of Cell Science
                The Company of Biologists Ltd
                0021-9533
                1477-9137
                15 January 2016
                15 January 2016
                : 129
                : 2
                : 314-328
                Affiliations
                [1 ]Department of Biomedicine, University of Bergen , Jonas Lies vei 91, Bergen N-5009, Norway
                [2 ]Molecular Imaging Center (MIC), University of Bergen , Jonas Lies vei 91, Bergen N-5009, Norway
                Author notes
                [* ]Author for correspondence ( Anni.Vedeler@ 123456biomed.uib.no )
                Article
                JCS173195
                10.1242/jcs.173195
                4732284
                26644180
                aef27222-2ffe-4a94-9e7e-7e0ea3f760a4
                © 2016. Published by The Company of Biologists Ltd

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

                History
                : 16 April 2015
                : 27 November 2015
                Funding
                Funded by: Helse Vest, http://search.crossref.org/fundref?q=501100004257;
                Award ID: 911499
                Funded by: The Research Council of Norway;
                Award ID: 240400/F20
                Funded by: University of Bergen, http://search.crossref.org/fundref?q=501100005036;
                Categories
                Research Article

                Cell biology
                annexin a2,tyrosine phosphorylation,oxidative stress,nucleus,cell cortex
                Cell biology
                annexin a2, tyrosine phosphorylation, oxidative stress, nucleus, cell cortex

                Comments

                Comment on this article