38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      IVT-seq reveals extreme bias in RNA sequencing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          RNA-seq is a powerful technique for identifying and quantifying transcription and splicing events, both known and novel. However, given its recent development and the proliferation of library construction methods, understanding the bias it introduces is incomplete but critical to realizing its value.

          Results

          We present a method, in vitro transcription sequencing (IVT-seq), for identifying and assessing the technical biases in RNA-seq library generation and sequencing at scale. We created a pool of over 1,000 in vitro transcribed RNAs from a full-length human cDNA library and sequenced them with polyA and total RNA-seq, the most common protocols. Because each cDNA is full length, and we show in vitro transcription is incredibly processive, each base in each transcript should be equivalently represented. However, with common RNA-seq applications and platforms, we find 50% of transcripts have more than two-fold and 10% have more than 10-fold differences in within-transcript sequence coverage. We also find greater than 6% of transcripts have regions of dramatically unpredictable sequencing coverage between samples, confounding accurate determination of their expression. We use a combination of experimental and computational approaches to show rRNA depletion is responsible for the most significant variability in coverage, and several sequence determinants also strongly influence representation.

          Conclusions

          These results show the utility of IVT-seq for promoting better understanding of bias introduced by RNA-seq. We find rRNA depletion is responsible for substantial, unappreciated biases in coverage introduced during library preparation. These biases suggest exon-level expression analysis may be inadvisable, and we recommend caution when interpreting RNA-seq results.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Comprehensive comparative analysis of strand-specific RNA sequencing methods

          Strand-specific, massively-parallel cDNA sequencing (RNA-Seq) is a powerful tool for novel transcript discovery, genome annotation, and expression profiling. Despite multiple published methods for strand-specific RNA-Seq, no consensus exists as to how to choose between them. Here, we developed a comprehensive computational pipeline to compare library quality metrics from any RNA-Seq method. Using the well-annotated Saccharomyces cerevisiae transcriptome as a benchmark, we compared seven library construction protocols, including both published and our own novel methods. We found marked differences in strand-specificity, library complexity, evenness and continuity of coverage, agreement with known annotations, and accuracy for expression profiling. Weighing each method’s performance and ease, we identify the dUTP second strand marking and the Illumina RNA ligation methods as the leading protocols, with the former benefitting from the current availability of paired-end sequencing. Our analysis provides a comprehensive benchmark, and our computational pipeline is applicable for assessment of future protocols in other organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synthetic spike-in standards for RNA-seq experiments.

            High-throughput sequencing of cDNA (RNA-seq) is a widely deployed transcriptome profiling and annotation technique, but questions about the performance of different protocols and platforms remain. We used a newly developed pool of 96 synthetic RNAs with various lengths, and GC content covering a 2(20) concentration range as spike-in controls to measure sensitivity, accuracy, and biases in RNA-seq experiments as well as to derive standard curves for quantifying the abundance of transcripts. We observed linearity between read density and RNA input over the entire detection range and excellent agreement between replicates, but we observed significantly larger imprecision than expected under pure Poisson sampling errors. We use the control RNAs to directly measure reproducible protocol-dependent biases due to GC content and transcript length as well as stereotypic heterogeneity in coverage across transcripts correlated with position relative to RNA termini and priming sequence bias. These effects lead to biased quantification for short transcripts and individual exons, which is a serious problem for measurements of isoform abundances, but that can partially be corrected using appropriate models of bias. By using the control RNAs, we derive limits for the discovery and detection of rare transcripts in RNA-seq experiments. By using data collected as part of the model organism and human Encyclopedia of DNA Elements projects (ENCODE and modENCODE), we demonstrate that external RNA controls are a useful resource for evaluating sensitivity and accuracy of RNA-seq experiments for transcriptome discovery and quantification. These quality metrics facilitate comparable analysis across different samples, protocols, and platforms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Biases in Illumina transcriptome sequencing caused by random hexamer priming

              Generation of cDNA using random hexamer priming induces biases in the nucleotide composition at the beginning of transcriptome sequencing reads from the Illumina Genome Analyzer. The bias is independent of organism and laboratory and impacts the uniformity of the reads along the transcriptome. We provide a read count reweighting scheme, based on the nucleotide frequencies of the reads, that mitigates the impact of the bias.
                Bookmark

                Author and article information

                Contributors
                Journal
                Genome Biol
                Genome Biol
                Genome Biology
                BioMed Central
                1465-6906
                1465-6914
                2014
                30 June 2014
                : 15
                : 6
                : R86
                Affiliations
                [1 ]Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
                [2 ]Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
                [3 ]Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
                [4 ]The Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
                [5 ]The Hamner Institutes for Health Sciences, Research Triangle Park, NC, USA
                [6 ]Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
                [7 ]Amazon Web Services, Herndon, VA, USA
                [8 ]Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
                [9 ]Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
                Article
                gb-2014-15-6-r86
                10.1186/gb-2014-15-6-r86
                4197826
                24981968
                aef79ff0-7f9a-4df1-8fb0-f851189960d5
                Copyright © 2014 Lahens et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 20 May 2014
                : 30 June 2014
                Categories
                Research

                Genetics
                Genetics

                Comments

                Comment on this article