43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanisms of the antinociceptive action of (−) Epicatechin obtained from the hydroalcoholic fraction of Combretum leprosum Mart & Eic in rodents

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The mechanisms of the antinociceptive activity of (−) epicatechin (EPI), a compound isolated from the hydroalcoholic fraction of Combreum leprosum Mart & Eicher.

          Methods

          were assessed in the model of chemical nociception induced by glutamate (20 μmol/paw). To evaluate the mechanisms involved, the animals , male Swiss mice (25-30 g), received EPI (50 mg/kg p.o.) after pretreatment with naloxone (2 mg/kg s.c. opioid antagonist), glibenclamide (2 mg/kg s.c. antagonist K + channels sensitive to ATP), ketanserin (0.3 mg/kg s.c. antagonist of receptor 5-HT 2A), yoimbine (0.15 mg/kg s.c. α2 adrenergic receptor antagonist), pindolol (1 mg/kg s.c. 5-HT1 a/1 b receptor antagonist), atropine (0.1 mg/kg s.c. muscarinic antagonist) and caffeine (3 mg/kg s.c. adenosine receptor antagonist), ondansetron (0.5 mg/kg s.c. for 5-HT 3 receptor) and L-arginine (600 mg/kg i.p.).

          Results

          The antinociceptive effect of EPI was reversed by pretreatment with naloxone and glibenclamide, ketanserin, yoimbine, atropine and pindolol, which demonstrates the involvement of opioid receptors and potassium channels sensitive to ATP, the serotoninergic (receptor 5HT 1A and 5HT 2A), adrenergic (receptor alpha 2) and cholinergic (muscarinic receptor) systems in the activities that were observed. The effects of EPI, however, were not reversed by pretreatment with caffeine, L-arginine or ondansetron, which shows that there is no involvement of 5HT 3 receptors or the purinergic and nitrergic systems in the antinociceptive effect of EPI. In the Open Field and Rotarod test, EPI had no significant effect, which shows that there was no central nervous system depressant or muscle relaxant effect on the results.

          Conclusions

          This study demonstrates that the antinociceptive activity of EPI in the glutamate model involves the participation of the opioid system, serotonin, adrenergic and cholinergic.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Protective effect of epicatechin, epicatechin gallate, and quercetin on lipid peroxidation in phospholipid bilayers.

          Antioxidative effect of (-)-epicatechin,(-)-epicatechin gallate, and quercetin was examined by measuring the inhibition of lipid peroxidation in large unilamellar liposomes composed of egg yolk phosphatidylcholine (PC). These catechol-type flavonoids were stable in the liposomal suspension. They retarded the accumulation of PC-hydroperoxides depending on their concentrations when the suspension was exposed to an water-soluble radical initiator, 2,2'-azobis(2-amidinopropane)hydrochloride (AAPH). Their inhibitory effects lasted longer than that of alpha-tocopherol. When each flavonoid and alpha-tocopherol were mixed in the liposomes, epicatechin and epicatechin gallate disappeared in favor of alpha-tocopherol. Quercetin also decreased faster than alpha-tocopherol in the initial stage of incubation. Kinetic studies of the inhibition of radical chain oxidation of methyl linoleate in solution demonstrated that the rate constants for the inhibition of oxidation by these flavonoids (kinh) were 5-20 times smaller than that by alpha-tocopherol. It is likely that the flavonoids are localized near the surface of phospholipid bilayers suitable for scavenging aqueous oxygen radicals and thereby they prevent the consumption of lipophilic alpha-to-copherol. Epicatechin and epicatecin gallate gave smaller kinh values than quercetin. Voltammograms of these compounds showed that electron-donating ability of catechins was lower than that of quercetin. However, antioxidative effects of catechins were comparable to that of quercetin in AAPH-initiated peroxidation of the liposomal suspension. It is concluded that catechins and quercetin serve as powerful antioxidants against lipid peroxidation when phospholipid bilayers are exposed to aqueous oxygen radicals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Peripheral mechanisms of pain and analgesia.

            This review summarizes recent findings on peripheral mechanisms underlying the generation and inhibition of pain. The focus is on events occurring in peripheral injured tissues that lead to the sensitization and excitation of primary afferent neurons, and on the modulation of such mechanisms. Primary afferent neurons are of particular interest from a therapeutic perspective because they are the initial generator of noxious impulses traveling towards relay stations in the spinal cord and the brain. Thus, if one finds ways to inhibit the sensitization and/or excitation of peripheral sensory neurons, subsequent central events such as wind-up, sensitization and plasticity may be prevented. Most importantly, if agents are found that selectively modulate primary afferent function and do not cross the blood-brain-barrier, centrally mediated untoward side effects of conventional analgesics (e.g. opioids, anticonvulsants) may be avoided. This article begins with the peripheral actions of opioids, turns to a discussion of the effects of adrenergic co-adjuvants, and then moves on to a discussion of pro-inflammatory mechanisms focusing on TRP channels and nerve growth factor, their signaling pathways and arising therapeutic perspectives.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glutamate receptors and pain.

              Pain is an important survival and protection mechanism for animals. However, chronic/persistent pain may be differentiated from normal physiological pain in that it confers no obvious advantage. An accumulating body of pharmacological, electrophysiological, and behavioral evidence is emerging in support of the notion that glutamate receptors play a crucial role in pain pathways and that modulation of glutamate receptors may have potential for therapeutic utility in several categories of persistent pain, including neuropathic pain resulting from injury and/or disease of central (e.g., spinal cord injury) or peripheral nerves (e.g., diabetic neuropathy, radiculopathy) and inflammatory or joint-related pain (e.g., rheumatoid arthritis, osteoarthritis). This review focuses on the role of glutamate receptors, including both ionotropic (AMPA, NMDA and kainate) and metabotropic (mGlu1-8) receptors in persistent pain states with particular emphasis on their expression patterns in nociceptive pathways and their potential as targets for pharmacological intervention strategies.
                Bookmark

                Author and article information

                Journal
                J Biomed Sci
                J. Biomed. Sci
                Journal of Biomedical Science
                BioMed Central
                1021-7770
                1423-0127
                2012
                25 July 2012
                : 19
                : 1
                : 68
                Affiliations
                [1 ]NPPM – Medicinal Plants Research Center, Health Sciences Center, Federal University of Piauí (UFPI), Av. Nossa Senhora de Fátima s/n, 64049-550, Teresina, PI, Brazil
                [2 ]Department of Chemistry, Natural Sciences Center/UFPI, Teresina, PI, Brazil
                Article
                1423-0127-19-68
                10.1186/1423-0127-19-68
                3500648
                22830928
                af073304-9dd5-401d-ba99-7b9b16b8efe8
                Copyright ©2012 Lopes et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 October 2011
                : 25 July 2012
                Categories
                Research

                Molecular medicine
                (−) epicatechin,serotonin and opioids,combretum leprosum,antinociception,glutamate

                Comments

                Comment on this article