111
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chest sonography: a useful tool to differentiate acute cardiogenic pulmonary edema from acute respiratory distress syndrome

      research-article
      1 , , 2 , 1
      Cardiovascular Ultrasound
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Differential diagnosis between acute cardiogenic pulmonary edema (APE) and acute lung injury/acute respiratory distress syndrome (ALI/ARDS) may often be difficult. We evaluated the ability of chest sonography in the identification of characteristic pleuropulmonary signs useful in the diagnosis of ALI/ARDS and APE.

          Methods

          Chest sonography was performed on admission to the intensive care unit in 58 consecutive patients affected by ALI/ARDS or by acute pulmonary edema (APE).

          Results

          Ultrasound examination was focalised on finding in the two groups the presence of: 1) alveolar-interstitial syndrome (AIS) 2) pleural lines abnormalities 3) absence or reduction of "gliding" sign 4) "spared areas" 5) consolidations 6) pleural effusion 7) "lung pulse".

          AIS was found in 100% of patients with ALI/ARDS and in 100% of patients with APE (p = ns). Pleural line abnormalities were observed in 100% of patients with ALI/ARDS and in 25% of patients with APE (p < 0.0001). Absence or reduction of the 'gliding sign' was observed in 100% of patients with ALI/ARDS and in 0% of patients with APE. 'Spared areas' were observed in 100% of patients with ALI/ARDS and in 0% of patients with APE (p < 0.0001). Consolidations were present in 83.3% of patients with ALI/ARDS in 0% of patients with APE (p < 0.0001). A pleural effusion was present in 66.6% of patients with ALI/ARDS and in 95% of patients with APE (p < 0.004). 'Lung pulse' was observed in 50% of patients with ALI/ARDS and in 0% of patients with APE (p < 0.0001).

          All signs, except the presence of AIS, presented a statistically significant difference in presentation between the two syndromes resulting specific for the ultrasonographic characterization of ALI/ARDS.

          Conclusion

          Pleuroparenchimal patterns in ALI/ARDS do find a characterization through ultrasonographic lung scan. In the critically ill the ultrasound demonstration of a dyshomogeneous AIS with spared areas, pleural line modifications and lung consolidations is strongly predictive, in an early phase, of non-cardiogenic pulmonary edema.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          The comet-tail artifact. An ultrasound sign of alveolar-interstitial syndrome.

          Can ultrasound be of any help in the diagnosis of alveolar-interstitial syndrome? In a prospective study, we examined 250 consecutive patients in a medical intensive care unit: 121 patients with radiologic alveolar-interstitial syndrome (disseminated to the whole lung, n = 92; localized, n = 29) and 129 patients without radiologic evidence of alveolar-interstitial syndrome. The antero-lateral chest wall was examined using ultrasound. The ultrasonic feature of multiple comet-tail artifacts fanning out from the lung surface was investigated. This pattern was present all over the lung surface in 86 of 92 patients with diffuse alveolar-interstitial syndrome (sensitivity of 93.4%). It was absent or confined to the last lateral intercostal space in 120 of 129 patients with normal chest X-ray (specificity of 93.0%). Tomodensitometric correlations showed that the thickened sub-pleural interlobular septa, as well as ground-glass areas, two lesions present in acute pulmonary edema, were associated with the presence of the comet-tail artifact. In conclusion, presence of the comet-tail artifact allowed diagnosis of alveolar-interstitial syndrome.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            What has computed tomography taught us about the acute respiratory distress syndrome?

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Usefulness of ultrasound lung comets as a nonradiologic sign of extravascular lung water.

              The "comet-tail" is an ultrasound sign detectable with ultrasound chest instruments; this sign consists of multiple comet-tails fanning out from the lung surface. They originate from water-thickened interlobular septa and would be ideal for nonradiologic bedside assessment of extravascular lung water. To assess the feasibility and value of ultrasonic comet signs, we studied 121 consecutive hospitalized patients (43 women and 78 men; aged 67 +/- 12 years) admitted to our combined cardiology-pneumology department (including cardiac intensive care unit); the study was conducted with commercially available echocardiographic systems including a portable unit. Transducer frequencies (range 2.5 to 3.5 MHz) were used. In each patient, the right and left chest was scanned by examining predefined locations in multiple intercostal spaces. Examiners blinded to clinical diagnoses noted the presence and numbers of lung comets at each examining site. A patient lung comet score was obtained by summing the number of comets in each of the scanning spaces. Within a few minutes, patients underwent chest x-ray, with specific assessment of extravascular lung water score by 2 pneumologist-radiologists blinded to clinical and echo findings. The chest ultrasound scan was obtained in all patients (feasibility 100%). The imaging time per examination was always <3 minutes. There was a linear correlation between echocardiographic comet score and radiologic lung water score (r = 0.78, p <0.01). Intrapatient variations (n = 15) showed an even stronger correlation between changes in echocardiographic lung comet and radiologic lung water scores (r = 0.89; p <0.01). In 121 consecutive hospitalized patients, we found a linear correlation between echocardiographic comet scores and radiologic extravascular lung water scores. Thus, the comet-tail is a simple, non-time-consuming, and reasonably accurate chest ultrasound sign of extravascular lung water that can be obtained at bedside (also with portable echocardiographic equipment) and is not restricted by cardiac acoustic window limitations.
                Bookmark

                Author and article information

                Journal
                Cardiovasc Ultrasound
                Cardiovascular Ultrasound
                BioMed Central
                1476-7120
                2008
                29 April 2008
                : 6
                : 16
                Affiliations
                [1 ]Emergency Department S. Antonio Abate General Hospital, Tolmezzo, Italy
                [2 ]Emergency Department Valle del Serchio General Hospital, Lucca, Italy
                Article
                1476-7120-6-16
                10.1186/1476-7120-6-16
                2386861
                18442425
                af136009-ccca-462f-b086-cb9e2bbda03a
                Copyright © 2008 Copetti et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 February 2008
                : 29 April 2008
                Categories
                Research

                Cardiovascular Medicine
                Cardiovascular Medicine

                Comments

                Comment on this article