75
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification and validation of housekeeping genes in brains of the desert locust Schistocerca gregaria under different developmental conditions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          To obtain reliable quantitative RT-PCR data, normalization relative to stable housekeeping genes is required. However, in practice, expression levels of 'typical' housekeeping genes have been found to vary between tissues and under different experimental conditions. To date, validation studies of reference genes in insects are extremely rare and have never been performed in locusts. In this study, putative housekeeping genes were identified in the desert locust, Schistocerca gregaria and two different software programs (geNorm and Normfinder) were applied to assess the stability of thesegenes.

          Results

          We have identified seven orthologs of commonly used housekeeping genes in the desert locust. The selected genes were the orthologs of actin, EF1a, GAPDH, RP49, TubA1, Ubi, and CG13220. By employing real time RT-PCR we have analysed the expression of these housekeeping genes in brain tissue of fifth instar nymphs and adults. In the brain of fifth instar nymphs geNorm indicated Sg-EF1a, Sg-GAPDH and Sg-RP49 as most stable genes, while Normfinder ranked Sg-RP49, Sg-EF1a and Sg-ACT as most suitable candidates for normalization. The best normalization candidates for gene expression studies in the brains of adult locusts were Sg-EF1a, Sg-GAPDH and Sg-Ubi according to geNorm, while Normfinder determined Sg-GAPDH, Sg-Ubi and Sg-ACT as the most stable housekeeping genes.

          Conclusion

          To perform transcript profiling studies on brains of the desert locust, the use of Sg-RP49, Sg-EF1a and Sg-ACT as reference genes is proposed for studies of fifth instar nymphs. In experiments with adult brains, however, the most preferred reference genes were Sg-GAPDH, Sg-Ubi and Sg-EF1a. These data will facilitate transcript profiling studies in desert locusts and provide a good starting point for the initial selection of genes for validation studies in other insects.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Using FlyAtlas to identify better Drosophila melanogaster models of human disease.

          FlyAtlas, a new online resource, provides the most comprehensive view yet of expression in multiple tissues of Drosophila melanogaster. Meta-analysis of the data shows that a significant fraction of the genome is expressed with great tissue specificity in the adult, demonstrating the need for the functional genomic community to embrace a wide range of functional phenotypes. Well-known developmental genes are often reused in surprising tissues in the adult, suggesting new functions. The homologs of many human genetic disease loci show selective expression in the Drosophila tissues analogous to the affected human tissues, providing a useful filter for potential candidate genes. Additionally, the contributions of each tissue to the whole-fly array signal can be calculated, demonstrating the limitations of whole-organism approaches to functional genomics and allowing modeling of a simple tissue fractionation procedure that should improve detection of weak or tissue-specific signals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis.

            qRT-PCR (real-time reverse transcription-PCR) has become the benchmark for the detection and quantification of RNA targets and is being utilized increasingly in novel clinical diagnostic assays. Quantitative results obtained by this technology are not only more informative than qualitative data, but simplify assay standardization and quality management. qRT-PCR assays are most established for the detection of viral load and therapy monitoring, and the development of SARS (severe acute respiratory syndrome)-associated coronavirus qRT-PCR assays provide a textbook example of the value of this technology for clinical diagnostics. The widespread use of qRT-PCR assays for diagnosis and the detection of disease-specific prognostic markers in leukaemia patients provide further examples of their usefulness. Their value for the detection of disease-associated mRNA expressed by circulating tumour cells in patients with solid malignancies is far less apparent, and the clinical significance of results obtained from such tests remains unclear. This is because of conceptual reservations as well as technical limitations that can interfere with the diagnostic specificity of qRT-PCR assays. Therefore, although it is evident that qRT-PCR assay has become a useful and important technology in the clinical diagnostic laboratory, it must be used appropriately and it is essential to be aware of its limitations if it is to fulfil its potential.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes.

              Gene expression levels of about 7,000 genes were measured in 11 different human adult and fetal tissues using high-density oligonucleotide arrays to identify genes involved in cellular maintenance. The tissues share a set of 535 transcripts that are turned on early in fetal development and stay on throughout adulthood. Because our goal was to identify genes that are involved in maintaining cellular function in normal individuals, we minimized the effect of individual variation by screening mRNA pooled from many individuals. This information is useful for establishing average expression levels in normal individuals. Additionally, we identified transcripts uniquely expressed in each of the 11 tissues.
                Bookmark

                Author and article information

                Journal
                BMC Mol Biol
                BMC Molecular Biology
                BioMed Central
                1471-2199
                2009
                9 June 2009
                : 10
                : 56
                Affiliations
                [1 ]Animal Physiology and Neurobiology, Zoological Institute, K.U.Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
                Article
                1471-2199-10-56
                10.1186/1471-2199-10-56
                2700112
                19508726
                af1eda62-6be1-4d0b-b009-88ea492d7802
                Copyright © 2009 Van Hiel et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 7 February 2009
                : 9 June 2009
                Categories
                Methodology Article

                Molecular biology
                Molecular biology

                Comments

                Comment on this article