11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Autism genetics: opportunities and challenges for clinical translation

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Various large studies have provided unprecedented insights into the genetics of autism spectrum disorders (ASDs). This Review discusses the challenges and opportunities of translating genetic and biological insights into clinical progress for ASDs, in areas including genetic testing, ASD classification, genetic counselling, comorbidities and therapeutics.

          Related collections

          Most cited references117

          • Record: found
          • Abstract: found
          • Article: not found

          Large recurrent microdeletions associated with schizophrenia.

          Reduced fecundity, associated with severe mental disorders, places negative selection pressure on risk alleles and may explain, in part, why common variants have not been found that confer risk of disorders such as autism, schizophrenia and mental retardation. Thus, rare variants may account for a larger fraction of the overall genetic risk than previously assumed. In contrast to rare single nucleotide mutations, rare copy number variations (CNVs) can be detected using genome-wide single nucleotide polymorphism arrays. This has led to the identification of CNVs associated with mental retardation and autism. In a genome-wide search for CNVs associating with schizophrenia, we used a population-based sample to identify de novo CNVs by analysing 9,878 transmissions from parents to offspring. The 66 de novo CNVs identified were tested for association in a sample of 1,433 schizophrenia cases and 33,250 controls. Three deletions at 1q21.1, 15q11.2 and 15q13.3 showing nominal association with schizophrenia in the first sample (phase I) were followed up in a second sample of 3,285 cases and 7,951 controls (phase II). All three deletions significantly associate with schizophrenia and related psychoses in the combined sample. The identification of these rare, recurrent risk variants, having occurred independently in multiple founders and being subject to negative selection, is important in itself. CNV analysis may also point the way to the identification of additional and more prevalent risk variants in genes and pathways involved in schizophrenia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mapping autism risk loci using genetic linkage and chromosomal rearrangements.

            Autism spectrum disorders (ASDs) are common, heritable neurodevelopmental conditions. The genetic architecture of ASDs is complex, requiring large samples to overcome heterogeneity. Here we broaden coverage and sample size relative to other studies of ASDs by using Affymetrix 10K SNP arrays and 1,181 [corrected] families with at least two affected individuals, performing the largest linkage scan to date while also analyzing copy number variation in these families. Linkage and copy number variation analyses implicate chromosome 11p12-p13 and neurexins, respectively, among other candidate loci. Neurexins team with previously implicated neuroligins for glutamatergic synaptogenesis, highlighting glutamate-related genes as promising candidates for contributing to ASDs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              De novo mutations in human genetic disease.

              New mutations have long been known to cause genetic disease, but their true contribution to the disease burden can only now be determined using family-based whole-genome or whole-exome sequencing approaches. In this Review we discuss recent findings suggesting that de novo mutations play a prominent part in rare and common forms of neurodevelopmental diseases, including intellectual disability, autism and schizophrenia. De novo mutations provide a mechanism by which early-onset reproductively lethal diseases remain frequent in the population. These mutations, although individually rare, may capture a significant part of the heritability for complex genetic diseases that is not detectable by genome-wide association studies.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Genetics
                Nat Rev Genet
                Springer Nature
                1471-0056
                1471-0064
                March 6 2017
                March 6 2017
                :
                :
                Article
                10.1038/nrg.2017.4
                28260791
                af2f8ea5-7b6d-4a28-a942-955530df1400
                © 2017
                History

                Comments

                Comment on this article