Blog
About

5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Effects of Pathological Flow on Pulmonary Artery Endothelial Production of Vasoactive Mediators and Growth Factors

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Alterations in pulmonary blood flow are often associated with the initiation and progression of pulmonary vascular disease. However, the cellular mechanisms involved in mediating flow effects in the pulmonary circulation remain unclear. Depending on the disease condition, flow may be extremely low or high. We therefore examined effects of pathologically low and high flow on endothelial production of factors capable of affecting pulmonary vascular tone and structure as well as on potential underlying mechanisms. Methods: Flow effects on pulmonary endothelial release of NO, PGF<sub>1a</sub>, ET-1 and TxB<sub>2</sub>, on expression of total and phosphorylated eNOS as well as Akt, and on VEGF were examined. Additionally, in a coculture system, effects of flow-exposed endothelial cells on smooth muscle (SM) proliferation and contractile protein were studied. Results: Compared to physiological flow, pathologically high and low flow attenuated endothelial release of NO and PGF<sub>1a</sub>, and enhanced release of ET-1. Physiological flow activated the Akt/eNOS pathway, while pathological flow depressed it. Pathologically high flow altered VE-cadherin expression. Pathologically high flow on the endothelium upregulated α-SM-actin and SM-MHC without affecting SM proliferation. Conclusion: Physiological flow leads to production of mediators which favor vasodilation. Pathological flow alters the balance of mediator production which favors vasoconstriction.

          Related collections

          Most cited references 14

          • Record: found
          • Abstract: found
          • Article: not found

          Biomechanical activation of vascular endothelium as a determinant of its functional phenotype.

          One of the striking features of vascular endothelium, the single-cell-thick lining of the cardiovascular system, is its phenotypic plasticity. Various pathophysiologic factors, such as cytokines, growth factors, hormones, and metabolic products, can modulate its functional phenotype in health and disease. In addition to these humoral stimuli, endothelial cells respond to their biomechanical environment, although the functional implications of this biomechanical paradigm of activation have not been fully explored. Here we describe a high-throughput genomic analysis of modulation of gene expression observed in cultured human endothelial cells exposed to two well defined biomechanical stimuli-a steady laminar shear stress and a turbulent shear stress of equivalent spatial and temporal average intensity. Comparison of the transcriptional activity of 11,397 unique genes revealed distinctive patterns of up- and down-regulation associated with each type of stimulus. Cluster analyses of transcriptional profiling data were coupled with other molecular and cell biological techniques to examine whether these global patterns of biomechanical activation are translated into distinct functional phenotypes. Confocal immunofluorescence microscopy of structural and contractile proteins revealed the formation of a complex apical cytoskeleton in response to laminar shear stress. Cell cycle analysis documented different effects of laminar and turbulent shear stresses on cell proliferation. Thus, endothelial cells have the capacity to discriminate among specific biomechanical forces and to translate these input stimuli into distinctive phenotypes. The demonstration that hemodynamically derived stimuli can be strong modulators of endothelial gene expression has important implications for our understanding of the mechanisms of vascular homeostasis and atherogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The shear stress of it all: the cell membrane and mechanochemical transduction.

            As the inner lining of the vessel wall, vascular endothelial cells are poised to act as a signal transduction interface between haemodynamic forces and the underlying vascular smooth-muscle cells. Detailed analyses of fluid mechanics in atherosclerosis-susceptible regions of the vasculature reveal a strong correlation between endothelial cell dysfunction and areas of low mean shear stress and oscillatory flow with flow recirculation. Conversely, steady shear stress stimulates cellular responses that are essential for endothelial cell function and are atheroprotective. The molecular basis of shear-induced mechanochemical signal transduction and the endothelium's ability to discriminate between flow profiles remains largely unclear. Given that fluid shear stress does not involve a traditional receptor/ligand interaction, identification of the molecule(s) responsible for sensing fluid flow and mechanical force discrimination has been difficult. This review will provide an overview of the haemodynamic forces experienced by the vascular endothelium and its role in localizing atherosclerotic lesions within specific regions of the vasculature. Also reviewed are several recent lines of evidence suggesting that both changes in membrane microviscosity linked to heterotrimeric G proteins, and the transmission of tension across the cell membrane to the cell-cell junction where known shear-sensitive proteins are localized, may serve as the primary force-sensing elements of the cell.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Smooth muscle cell changes during flow-related remodeling of rat mesenteric resistance arteries.

              To obtain information on the molecular and cellular mechanisms of flow-induced arterial remodeling, we analyzed the morphology and smooth muscle cell (SMC) characteristics in rat mesenteric resistance arteries after interventions that decreased and increased flow. Juvenile male Wistar Kyoto rats were subjected to surgery that, compared with control arteries, provided arteries with chronic low flow and chronic high flow. Low flow resulted in a decreased passive lumen diameter, hypotrophy of the artery wall, and both loss and decreased size of SMCs. Time course studies, with intervention length ranging from 2 to 32 days of altered blood flow, showed that the narrowing of the lumen diameter in low-flow arteries appeared within 2 days and that an early dedifferentiation of SMC phenotype was indicated by markedly reduced levels of desmin mRNA. High flow resulted in an increased passive lumen diameter and in hypertrophy of the artery wall. The hypertrophy resulted from SMC proliferation because SMC number, measured by the 3D-dissector technique, was increased and immunohistochemical assessment of proliferating cell nuclear antigen also showed an increase. The widening of high-flow arteries required 16 days to become established, at which time desmin mRNA was reduced. This time was also required to establish changed wall mass in both low-flow and high-flow arteries. Apoptotic cells detected by TdT-mediated dUTP-biotin nick end labeling staining were mainly located in the medial layer, and evaluation of DNA fragmentation indicated that increased apoptosis occurred in both low flow and high flow. This study shows for the first time direct evidence that reduced and elevated blood flow in resistance arteries produce, respectively, decrease and increase in SMC number, with dedifferentiation of the SMCs in both cases.
                Bookmark

                Author and article information

                Journal
                JVR
                J Vasc Res
                10.1159/issn.1018-1172
                Journal of Vascular Research
                S. Karger AG
                1018-1172
                1423-0135
                2009
                October 2009
                30 June 2009
                : 46
                : 6
                : 561-571
                Affiliations
                aDepartment of Pediatrics and CVP Research, University of Colorado at Denver and Health Sciences Center, Denver, Colo., and bDepartment of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colo., USA
                Article
                226224 J Vasc Res 2009;46:561–571
                10.1159/000226224
                3073484
                19571576
                © 2009 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 5, References: 31, Pages: 11
                Categories
                Research Paper

                Comments

                Comment on this article