154
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Oncogenic pathway signatures in human cancers as a guide to targeted therapies

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The development of an oncogenic state is a complex process involving the accumulation of multiple independent mutations that lead to deregulation of cell signalling pathways central to the control of cell growth and cell fate. The ability to define cancer subtypes, recurrence of disease and response to specific therapies using DNA microarray-based gene expression signatures has been demonstrated in multiple studies. Various studies have also demonstrated the potential for using gene expression profiles for the analysis of oncogenic pathways. Here we show that gene expression signatures can be identified that reflect the activation status of several oncogenic pathways. When evaluated in several large collections of human cancers, these gene expression signatures identify patterns of pathway deregulation in tumours and clinically relevant associations with disease outcomes. Combining signature-based predictions across several pathways identifies coordinated patterns of pathway deregulation that distinguish between specific cancers and tumour subtypes. Clustering tumours based on pathway signatures further defines prognosis in respective patient subsets, demonstrating that patterns of oncogenic pathway deregulation underlie the development of the oncogenic phenotype and reflect the biology and outcome of specific cancers. Predictions of pathway deregulation in cancer cell lines are also shown to predict the sensitivity to therapeutic agents that target components of the pathway. Linking pathway deregulation with sensitivity to therapeutics that target components of the pathway provides an opportunity to make use of these oncogenic pathway signatures to guide the use of targeted therapeutics.

          Related collections

          Most cited references 12

          • Record: found
          • Abstract: not found
          • Article: not found

          The Hallmarks of Cancer

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression.

            Many studies have used DNA microarrays to identify the gene expression signatures of human cancer, yet the critical features of these often unmanageably large signatures remain elusive. To address this, we developed a statistical method, comparative metaprofiling, which identifies and assesses the intersection of multiple gene expression signatures from a diverse collection of microarray data sets. We collected and analyzed 40 published cancer microarray data sets, comprising 38 million gene expression measurements from >3,700 cancer samples. From this, we characterized a common transcriptional profile that is universally activated in most cancer types relative to the normal tissues from which they arose, likely reflecting essential transcriptional features of neoplastic transformation. In addition, we characterized a transcriptional profile that is commonly activated in various types of undifferentiated cancer, suggesting common molecular mechanisms by which cancer cells progress and avoid differentiation. Finally, we validated these transcriptional profiles on independent data sets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Predicting the clinical status of human breast cancer by using gene expression profiles.

              Prognostic and predictive factors are indispensable tools in the treatment of patients with neoplastic disease. For the most part, such factors rely on a few specific cell surface, histological, or gross pathologic features. Gene expression assays have the potential to supplement what were previously a few distinct features with many thousands of features. We have developed Bayesian regression models that provide predictive capability based on gene expression data derived from DNA microarray analysis of a series of primary breast cancer samples. These patterns have the capacity to discriminate breast tumors on the basis of estrogen receptor status and also on the categorized lymph node status. Importantly, we assess the utility and validity of such models in predicting the status of tumors in crossvalidation determinations. The practical value of such approaches relies on the ability not only to assess relative probabilities of clinical outcomes for future samples but also to provide an honest assessment of the uncertainties associated with such predictive classifications on the basis of the selection of gene subsets for each validation analysis. This latter point is of critical importance in the ability to apply these methodologies to clinical assessment of tumor phenotype.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                January 2006
                November 6 2005
                January 2006
                : 439
                : 7074
                : 353-357
                Article
                10.1038/nature04296
                16273092
                © 2006

                Comments

                Comment on this article