73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Numerous Transitions of Sex Chromosomes in Diptera

      research-article
      , *
      PLoS Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many species groups, including mammals and many insects, determine sex using heteromorphic sex chromosomes. Diptera flies, which include the model Drosophila melanogaster, generally have XY sex chromosomes and a conserved karyotype consisting of six chromosomal arms (five large rods and a small dot), but superficially similar karyotypes may conceal the true extent of sex chromosome variation. Here, we use whole-genome analysis in 37 fly species belonging to 22 different families of Diptera and uncover tremendous hidden diversity in sex chromosome karyotypes among flies. We identify over a dozen different sex chromosome configurations, and the small dot chromosome is repeatedly used as the sex chromosome, which presumably reflects the ancestral karyotype of higher Diptera. However, we identify species with undifferentiated sex chromosomes, others in which a different chromosome replaced the dot as a sex chromosome or in which up to three chromosomal elements became incorporated into the sex chromosomes, and others yet with female heterogamety (ZW sex chromosomes). Transcriptome analysis shows that dosage compensation has evolved multiple times in flies, consistently through up-regulation of the single X in males. However, X chromosomes generally show a deficiency of genes with male-biased expression, possibly reflecting sex-specific selective pressures. These species thus provide a rich resource to study sex chromosome biology in a comparative manner and show that similar selective forces have shaped the unique evolution of sex chromosomes in diverse fly taxa.

          Abstract

          Analysis of the genomes of 37 fly species from 22 families of Diptera shows that superficially similar karyotypes conceal the true extent of sex chromosome variation and that sex chromosome transitions are, in fact, frequent in flies.

          Author Summary

          A mind-blowing diversity of sex-determining mechanisms exists among eukaryotes, but highly differentiated sex chromosomes—a degenerate, gene-poor Y chromosome, and an often dosage-compensated X—appear to represent an evolutionary dead-end. In our manuscript, we systematically study the genomic composition of sex chromosomes across dipteran insects (flies and mosquitoes), which are generally considered to show stable XY sex chromosomes. Our whole-genome analysis of 37 fly species from 22 families of Diptera uncovers tremendous hidden variation in sex chromosomes. Some species have newly gained or secondarily lost their sex chromosomes; in others, a different chromosome has replaced the original sex chromosome or multiple chromosomal elements have become incorporated into the sex chromosomes; still other species have female heterogametic sex chromosomes. We perform a comparative transcriptome analysis to show that dosage compensation has evolved multiple times, consistently through up-regulation of the single X chromosome in males. These species provide a rich resource to study sex chromosome biology in a comparative manner and show that similar selective forces have shaped the unique evolution of sex chromosomes in diverse fly taxa.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          The genome sequence of the malaria mosquito Anopheles gambiae.

          Anopheles gambiae is the principal vector of malaria, a disease that afflicts more than 500 million people and causes more than 1 million deaths each year. Tenfold shotgun sequence coverage was obtained from the PEST strain of A. gambiae and assembled into scaffolds that span 278 million base pairs. A total of 91% of the genome was organized in 303 scaffolds; the largest scaffold was 23.1 million base pairs. There was substantial genetic variation within this strain, and the apparent existence of two haplotypes of approximately equal frequency ("dual haplotypes") in a substantial fraction of the genome likely reflects the outbred nature of the PEST strain. The sequence produced a conservative inference of more than 400,000 single-nucleotide polymorphisms that showed a markedly bimodal density distribution. Analysis of the genome sequence revealed strong evidence for about 14,000 protein-encoding transcripts. Prominent expansions in specific families of proteins likely involved in cell adhesion and immunity were noted. An expressed sequence tag analysis of genes regulated by blood feeding provided insights into the physiological adaptations of a hematophagous insect.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Streaming fragment assignment for real-time analysis of sequencing experiments

            We present eXpress, a software package for highly efficient probabilistic assignment of ambiguously mapping sequenced fragments. eXpress uses a streaming algorithm with linear run time and constant memory use. It can determine abundances of sequenced molecules in real time, and can be applied to ChIP-seq, metagenomics and other large-scale sequencing data. We demonstrate its use on RNA-seq data, showing greater efficiency than other quantification methods.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration.

              The human Y chromosome is intriguing not only because it harbours the master-switch gene that determines gender but also because of its unusual evolutionary history. The Y chromosome evolved from an autosome, and its evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species and in plants have shed light on the current gene content of the Y chromosome, its origins and its long-term fate. Furthermore, comparative analysis of young and old Y chromosomes has given further insights into the evolutionary and molecular forces triggering Y-chromosome degeneration and into the evolutionary destiny of the Y chromosome.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, CA USA )
                1544-9173
                1545-7885
                16 April 2015
                April 2015
                : 13
                : 4
                : e1002078
                Affiliations
                [001]Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
                Fred Hutchinson Cancer Research Center, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: DB BV. Performed the experiments: BV. Analyzed the data: DB BV. Contributed reagents/materials/analysis tools: DB BV. Wrote the paper: DB BV.

                Article
                PBIOLOGY-D-14-02861
                10.1371/journal.pbio.1002078
                4400102
                25879221
                af59e728-d54b-4579-85fe-1e805ef381d1
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 13 August 2014
                : 13 January 2015
                Page count
                Figures: 5, Tables: 1, Pages: 22
                Funding
                This research was funded by NIH grants (R01GM076007 and R01GM093182) to DB. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All DNA/RNA-seq reads generated for this study are deposited at http://www.ncbi.nlm.nih.gov/sra under the bioproject accession numbers SRP050301 (genome data) and SRP050303 (transcriptome data).

                Life sciences
                Life sciences

                Comments

                Comment on this article