53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Breast cancer resistance protein (BCRP/ABCG2): its role in multidrug resistance and regulation of its gene expression

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Breast cancer resistance protein (BCRP)/ATP-binding cassette subfamily G member 2 (ABCG2) is an ATP-binding cassette (ABC) transporter identified as a molecular cause of multidrug resistance (MDR) in diverse cancer cells. BCRP physiologically functions as a part of a self-defense mechanism for the organism; it enhances elimination of toxic xenobiotic substances and harmful agents in the gut and biliary tract, as well as through the blood-brain, placental, and possibly blood-testis barriers. BCRP recognizes and transports numerous anticancer drugs including conventional chemotherapeutic and targeted small therapeutic molecules relatively new in clinical use. Thus, BCRP expression in cancer cells directly causes MDR by active efflux of anticancer drugs. Because BCRP is also known to be a stem cell marker, its expression in cancer cells could be a manifestation of metabolic and signaling pathways that confer multiple mechanisms of drug resistance, self-renewal (sternness), and invasiveness (aggressiveness), and thereby impart a poor prognosis. Therefore, blocking BCRP-mediated active efflux may provide a therapeutic benefit for cancers. Delineating the precise molecular mechanisms for BCRP gene expression may lead to identification of a novel molecular target to modulate BCRP-mediated MDR. Current evidence suggests that BCRP gene transcription is regulated by a number of trans-acting elements including hypoxia inducible factor 1α, estrogen receptor, and peroxisome proliferator-activated receptor. Furthermore, alternative promoter usage, demethylation of the BCRP promoter, and histone modification are likely associated with drug-induced BCRP overexpression in cancer cells. Finally, PI3K/AKT signaling may play a critical role in modulating BCRP function under a variety of conditions. These biological events seem involved in a complicated manner. Untangling the events would be an essential first step to developing a method to modulate BCRP function to aid patients with cancer. This review will present a synopsis of the impact of BCRP-mediated MDR in cancer cells, and the molecular mechanisms of acquired MDR currently postulated in a variety of human cancers.

          Related collections

          Most cited references249

          • Record: found
          • Abstract: found
          • Article: not found

          Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling.

          Although patients with advanced refractory solid tumors have poor prognosis, the clinical development of targeted protein kinase inhibitors offers hope for the future treatment of many cancers. In vivo and in vitro studies have shown that the oral multikinase inhibitor, sorafenib, inhibits tumor growth and disrupts tumor microvasculature through antiproliferative, antiangiogenic, and/or proapoptotic effects. Sorafenib has shown antitumor activity in phase II/III trials involving patients with advanced renal cell carcinoma and hepatocellular carcinoma. The multiple molecular targets of sorafenib (the serine/threonine kinase Raf and receptor tyrosine kinases) may explain its broad preclinical and clinical activity. This review highlights the antitumor activity of sorafenib across a variety of tumor types, including renal cell, hepatocellular, breast, and colorectal carcinomas in the preclinical setting. In particular, preclinical evidence that supports the different mechanisms of action of sorafenib is discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells.

            In normal brain, the side population (SP) phenotype is generated by ABC transporter activity and identifies stem cell and endothelial cell subpopulations by dye exclusion. By drug efflux, the ABCG2 transporter provides chemoresistance in stem cells and contributes to the blood brain barrier (BBB) when active in endothelial cells. We investigated the SP phenotype of mouse and human gliomas. In glioma endothelial cells, ABC transporter function is impaired, corresponding to disruption of the BBB in these tumors. By contrast, the SP phenotype is increased in nonendothelial cells that form neurospheres and are highly tumorigenic. In this cell population, Akt, but not its downstream target mTOR, regulates ABCG2 activity, and loss of PTEN increases the SP. This Akt-induced ABCG2 activation results from its transport to the plasma membrane. Temozolomide, the standard treatment of gliomas, although not an ABCG2 substrate, increases the SP in glioma cells, especially in cells missing PTEN.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study.

              Hyperuricaemia, a highly heritable trait, is a key risk factor for gout. We aimed to identify novel genes associated with serum uric acid concentration and gout. Genome-wide association studies were done for serum uric acid in 7699 participants in the Framingham cohort and in 4148 participants in the Rotterdam cohort. Genome-wide significant single nucleotide polymorphisms (SNPs) were replicated in white (n=11 024) and black (n=3843) individuals who took part in the study of Atherosclerosis Risk in Communities (ARIC). The SNPs that reached genome-wide significant association with uric acid in either the Framingham cohort (p<5.0 x 10(-8)) or the Rotterdam cohort (p<1.0 x 10(-7)) were evaluated with gout. The results obtained in white participants were combined using meta-analysis. Three loci in the Framingham cohort and two in the Rotterdam cohort showed genome-wide association with uric acid. Top SNPs in each locus were: missense rs16890979 in SLC2A9 (p=7.0 x 10(-168) and 2.9 x 10(-18) for white and black participants, respectively); missense rs2231142 in ABCG2 (p=2.5 x 10(-60) and 9.8 x 10(-4)), and rs1165205 in SLC17A3 (p=3.3 x 10(-26) and 0.33). All SNPs were direction-consistent with gout in white participants: rs16890979 (OR 0.59 per T allele, 95% CI 0.52-0.68, p=7.0 x 10(-14)), rs2231142 (1.74, 1.51-1.99, p=3.3 x 10(-15)), and rs1165205 (0.85, 0.77-0.94, p=0.002). In black participants of the ARIC study, rs2231142 was direction-consistent with gout (1.71, 1.06-2.77, p=0.028). An additive genetic risk score of high-risk alleles at the three loci showed graded associations with uric acid (272-351 mumol/L in the Framingham cohort, 269-386 mumol/L in the Rotterdam cohort, and 303-426 mumol/L in white participants of the ARIC study) and gout (frequency 2-13% in the Framingham cohort, 2-8% in the Rotterdam cohort, and 1-18% in white participants in the ARIC study). We identified three genetic loci associated with uric acid concentration and gout. A score based on genes with a putative role in renal urate handling showed a substantial risk for gout.
                Bookmark

                Author and article information

                Journal
                Chin J Cancer
                Chin J Cancer
                CJC
                Chinese Journal of Cancer
                Sun Yat-sen University Cancer Center
                1000-467X
                1944-446X
                February 2012
                : 31
                : 2
                : 73-99
                Affiliations
                [1 ]Department of Membrane Transport and Biopharma-ceutics, Kanazawa University School of Pharmaceutical Sciences, Kanazawa 920-1192, Japan;
                [2 ]University of Maryland Greenebaum Cancer Center and the Departments of Medicine, Pathology and Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, and the Baltimore VA Medical Center, Baltimore, Maryland 21201, USA
                Author notes
                Corresponding Author: Takeo Nakanishi, Department of Membrane Transport and Biopharmaceutics, Kanazawa University School of Pharmaceutical Sciences, Kanazawa 920-1192, Japan. Tel: +81-76-234-4478; Fax: +81-76-264-6284; Email: nakanish@ 123456p.kanazawa-u.ac.jp .
                Article
                cjc-31-02-073
                10.5732/cjc.011.10320
                3777471
                22098950
                af7220e5-540c-4ffc-8478-4b471ec0c5f9
                Chinese Journal of Cancer

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License, which allows readers to alter, transform, or build upon the article and then distribute the resulting work under the same or similar license to this one. The work must be attributed back to the original author and commercial use is not permitted without specific permission.

                History
                : 8 August 2011
                : 17 September 2011
                : 18 September 2011
                Categories
                Review

                bcrp,abcg2,multidrug resistance (mdr),transporter,gene expression,tyrosine kinase inhibitors,cancer stem cells

                Comments

                Comment on this article