48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Ser/Thr kinase MAP4K4 drives c-Met-induced motility and invasiveness in a cell-based model of SHH medulloblastoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Medulloblastoma (MB) comprises four molecularly and genetically distinct subgroups of embryonal brain tumors that develop in the cerebellum. MB mostly affects infants and children and is difficult to treat because of frequent dissemination of tumor cells within the leptomeningeal space. A potential promoter of cell dissemination is the c-Met proto-oncogene receptor tyrosine kinase, which is aberrantly expressed in many human tumors including MB. Database analysis showed that c-Met is highly expressed in the sonic hedgehog (SHH) subgroup and in a small subset of Group 3 and Group 4 MB tumors. Using a cell-based three-dimensional cell motility assay combined with live-cell imaging, we investigated whether the c-Met ligand HGF could drive dissemination of MB cells expressing high levels of c-Met, and determined downstream effector mechanisms of this process. We detected variable c-Met expression in different established human MB cell lines, and we found that in lines expressing high c-Met levels, HGF promoted cell dissemination and invasiveness. Specifically, HGF-induced c-Met activation enhanced the capability of the individual cells to migrate in a JNK-dependent manner. Additionally, we identified the Ser/Thr kinase MAP4K4 as a novel driver of c-Met-induced invasive cell dissemination. This increased invasive motility was due to MAP4K4 control of F-actin dynamics in structures required for migration and invasion. Thus, MAP4K4 couples growth factor signaling to actin cytoskeleton regulation in tumor cells, suggesting that MAP4K4 could present a promising novel target to be evaluated for treating growth factor-induced dissemination of MB tumors of different subgroups and of other human cancers.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s40064-015-0784-2) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation.

          Hedgehog signaling is aberrantly activated in glioma, medulloblastoma, basal cell carcinoma, lung cancer, esophageal cancer, gastric cancer, pancreatic cancer, breast cancer, and other tumors. Hedgehog signals activate GLI family members via Smoothened. RTK signaling potentiates GLI activity through PI3K-AKT-mediated GSK3 inactivation or RAS-STIL1-mediated SUFU inactivation, while GPCR signaling to Gs represses GLI activity through adenylate cyclase-mediated PKA activation. GLI activators bind to GACCACCCA motif to regulate transcription of GLI1, PTCH1, PTCH2, HHIP1, MYCN, CCND1, CCND2, BCL2, CFLAR, FOXF1, FOXL1, PRDM1 (BLIMP1), JAG2, GREM1, and Follistatin. Hedgehog signals are fine-tuned based on positive feedback loop via GLI1 and negative feedback loop via PTCH1, PTCH2, and HHIP1. Excessive positive feedback or collapsed negative feedback of Hedgehog signaling due to epigenetic or genetic alterations leads to carcinogenesis. Hedgehog signals induce cellular proliferation through upregulation of N-Myc, Cyclin D/E, and FOXM1. Hedgehog signals directly upregulate JAG2, indirectly upregulate mesenchymal BMP4 via FOXF1 or FOXL1, and also upregulate WNT2B and WNT5A. Hedgehog signals induce stem cell markers BMI1, LGR5, CD44 and CD133 based on cross-talk with WNT and/or other signals. Hedgehog signals upregulate BCL2 and CFLAR to promote cellular survival, SNAI1 (Snail), SNAI2 (Slug), ZEB1, ZEB2 (SIP1), TWIST2, and FOXC2 to promote epithelial-to-mesenchymal transition, and PTHLH (PTHrP) to promote osteolytic bone metastasis. KAAD-cyclopamine, Mu-SSKYQ-cyclopamine, IPI-269609, SANT1, SANT2, CUR61414 and HhAntag are small-molecule inhibitors targeted to Smoothened, GANT58, GANT61 to GLI1 and GLI2, and Robot-nikinin to SHH. Hedgehog signaling inhibitors should be used in combination with RTK inhibitors, GPCR modulators, and/or irradiation for cancer therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis.

            Recurrent medulloblastoma is a therapeutic challenge because it is almost always fatal. Studies have confirmed that medulloblastoma consists of at least four distinct subgroups. We sought to delineate subgroup-specific differences in medulloblastoma recurrence patterns. We retrospectively identified a discovery cohort of all recurrent medulloblastomas at the Hospital for Sick Children (Toronto, ON, Canada) from 1994 to 2012 (cohort 1), and established molecular subgroups using a nanoString-based assay on formalin-fixed paraffin-embedded tissues or frozen tissue. The anatomical site of recurrence (local tumour bed or leptomeningeal metastasis), time to recurrence, and survival after recurrence were assessed in a subgroup-specific manner. Two independent, non-overlapping cohorts (cohort 2: samples from patients with recurrent medulloblastomas from 13 centres worldwide, obtained between 1991 and 2012; cohort 3: samples from patients with recurrent medulloblastoma obtained at the NN Burdenko Neurosurgical Institute [Moscow, Russia] between 1994 and 2011) were analysed to confirm and validate observations. When possible, molecular subgrouping was done on tissue obtained from both the initial surgery and at recurrence. Cohort 1 consisted of 30 patients with recurrent medulloblastomas; nine with local recurrences, and 21 with metastatic recurrences. Cohort 2 consisted of 77 patients and cohort 3 of 96 patients with recurrent medulloblastoma. Subgroup affiliation remained stable at recurrence in all 34 cases with available matched primary and recurrent pairs (five pairs from cohort 1 and 29 pairs from cohort 2 [15 SHH, five group 3, 14 group 4]). This finding was validated in 17 pairs from cohort 3. When analysed in a subgroup-specific manner, local recurrences in cohort 1 were more frequent in SHH tumours (eight of nine [89%]) and metastatic recurrences were more common in group 3 and group 4 tumours (17 of 20 [85%] with one WNT, p=0·0014, local vs metastatic recurrence, SHH vs group 3 vs group 4). The subgroup-specific location of recurrence was confirmed in cohort 2 (p=0·0013 for local vs metastatic recurrence, SHH vs group 3 vs group 4,), and cohort 3 (p<0·0001). Treatment with craniospinal irradiation at diagnosis was not significantly associated with the anatomical pattern of recurrence. Survival after recurrence was significantly longer in patients with group 4 tumours in cohort 1 (p=0·013) than with other subgroups, which was confirmed in cohort 2 (p=0·0075), but not cohort 3 (p=0·70). Medulloblastoma does not change subgroup at the time of recurrence, reinforcing the stability of the four main medulloblastoma subgroups. Significant differences in the location and timing of recurrence across medulloblastoma subgroups have potential treatment ramifications. Specifically, intensified local (posterior fossa) therapy should be tested in the initial treatment of patients with SHH tumours. Refinement of therapy for patients with group 3 or group 4 tumours should focus on metastases. Copyright © 2013 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              c-MET as a potential therapeutic target and biomarker in cancer.

              The receptor tyrosine kinase c-MET and its ligand, hepatocyte growth factor (HGF), regulate multiple cellular processes that stimulate cell proliferation, invasion and angiogenesis. This review provides an overview of the evidence to support c-MET or the HGF/c-MET signaling pathway as relevant targets for personalized cancer treatment based on high frequencies of c-MET and/or HGF overexpression, activation, amplification in non-small cell lung carcinoma (NSCLC), gastric, ovarian, pancreatic, thyroid, breast, head and neck, colon and kidney carcinomas. Additionally, the current knowledge of small molecule inhibitors (tivantinib [ARQ 197]), c-MET/HGF antibodies (rilotumumab and MetMAb) and mechanisms of resistance to c-MET-targeted therapies are discussed.
                Bookmark

                Author and article information

                Contributors
                Karthiga.Kumar@kispi.uzh.ch
                Dimita.Tripolitsioti@kispi.uzh.ch
                min.ma.3576@gmail.com
                jasmin.graehlert@unibas.ch
                Katja.Egli@kispi.uzh.ch
                giuliofiaschetti@hotmail.com
                Tarek.Shalaby@kispi.uzh.ch
                Michael.Grotzer@kispi.uzh.ch
                Martin.Baumgartner@kispi.uzh.ch
                Journal
                Springerplus
                Springerplus
                SpringerPlus
                Springer International Publishing (Cham )
                2193-1801
                14 January 2015
                14 January 2015
                2015
                : 4
                : 19
                Affiliations
                [ ]Department of Oncology, Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
                [ ]Current address: Department of Biomedicine, University Hospital Basel, Basel, Switzerland
                [ ]University Children’s Hospital Zürich, Department of Oncology, Children’s Research Center, Neuro-Oncology group, August-Forel Strasse 1, CH-8008 Zürich, Switzerland
                Article
                784
                10.1186/s40064-015-0784-2
                4302160
                25625039
                af759a91-6168-4fae-aa21-1e056db2302f
                © Santhana Kumar et al.; licensee Springer. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

                History
                : 22 September 2014
                : 2 January 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Uncategorized
                medulloblastoma,cancer cell dissemination,cell motility,c-met,map4k4,actin dynamics
                Uncategorized
                medulloblastoma, cancer cell dissemination, cell motility, c-met, map4k4, actin dynamics

                Comments

                Comment on this article