Blog
About

1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reproducibility of fluid-phase measurements in PBS-treated sputum supernatant of healthy and stable COPD subjects

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          The purpose of this study was to investigate the reproducibility of fluid-phase measurements in PBS-treated sputum supernatant, processed using the two-step method, of healthy and stable COPD individuals.

          Methods

          Nine healthy subjects and 23 stable COPD patients provided sputum twice within 6 days. A two-step sputum processing method was used to obtain PBS-treated supernatant and sputum cells. Soluble protein markers and IgG and IgM autoantibody profiles in PBS supernatant were analyzed using customized microarrays. Repeatability of measurements was assessed by paired-sample testing and an intraclass correlation coefficient, then graphically reported by Bland–Altman plot.

          Results

          There was no significant difference between the repeated detection of 8/10 types of soluble protein markers, all 13 types of IgG autoantibodies, and 12/13 types of corresponding IgM autoantibodies in PBS supernatant. The repeatability of measurements in PBS supernatant was substantial to very good for interleukin 6 (IL6), IL8, IL13, IL10, IL33, vascular endothelial growth factor, soluble receptor for advanced glycation end-products, and tumor necrosis factor-α; for IgG autoantibodies against aggrecan, centromere protein B (CENP-B), collagen II, collagen IV, cytochrome C, elastin, heat shock protein 47 (HSP47), HSP70, and La/Sjögren syndrome type B antigen; for IgM autoantibodies against CENP-B, collagen I, collagen II, collagen IV, cytokeratin 18, and HSP70; and for sputum neutrophils, macrophages and eosinophils count. Bland–Altman plots suggested good consistency within repeated measurements. Stable COPD patients differed from healthy subjects in the proportion of neutrophils and eosinophils; relative fluorescence intensity of anti-cytochrome C IgG, anti-aggrecan IgM, and anti-cytochrome C IgM. There was a significant positive correlation for stable COPD patients between sputum anti-collagen II IgG and post-bronchodilator FEV 1%.

          Conclusion

          We confirmed fluid-phase measurements in PBS-treated sputum supernatant by high-throughput techniques with good repeatability. We demonstrated the presence of IgG and IgM autoantibodies to multiple antigens in the airways of COPD patients.

          Related collections

          Most cited references 18

          • Record: found
          • Abstract: found
          • Article: not found

          Statistical methods for assessing agreement between two methods of clinical measurement.

          In clinical measurement comparison of a new measurement technique with an established one is often needed to see whether they agree sufficiently for the new to replace the old. Such investigations are often analysed inappropriately, notably by using correlation coefficients. The use of correlation is misleading. An alternative approach, based on graphical techniques and simple calculations, is described, together with the relation between this analysis and the assessment of repeatability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Indices of airway inflammation in induced sputum: reproducibility and validity of cell and fluid-phase measurements.

            Methods to examine sputum for indices of airway inflammation are evolving. We have examined the repeatability and the validity of an improved method to measure sputum cells and fluid-phase eosinophil cationic protein (ECP), major basic protein (MBP), eosinophil-derived neurotoxin (EDN), albumin, fibrinogen, tryptase, and interleukin-5 (IL-5). Sputum was induced with hypertonic saline twice within 6 d in 10 healthy subjects, 19 stable asthmatics, and 10 smokers with nonobstructive bronchitis. The method included the processing of freshly expectorated sputum separated from saliva, treatment with a fixed proportion of dithiothreitol 0.1% followed by Dulbecco's phosphate-buffered saline, making cytospins, and collecting the supernatant. The reproducibility of measurements, calculated by the intraclass correlation coefficient, was high for all indices measured with the exception of total cell counts and proportion of lymphocytes. Asthmatics, in comparison with healthy subjects and smokers with bronchitis, had a higher proportion of sputum eosinophils (median percent 5.2 versus 0.5 and 0.3), metachromatic cells (0.3 versus 0.07 and 0.08), ECP (1,040 micrograms/L versus 288 and 352), MBP (1,176 micrograms/L versus 304 and 160), and EDN (1,512 micrograms/L versus 448 and 272). Asthmatics differed from healthy subjects, but not from smokers with bronchitis, in the proportion of neutrophils (46.9% versus 24.1%), albumin (704 versus 288 micrograms/mL), and fibrinogen (2,080 versus 440 ng/mL). Smokers with bronchitis showed a trend for a higher neutrophil count and levels of albumin and fibrinogen than healthy subjects. The proportion of sputum eosinophils correlated positively with ECP, MBP, EDN, albumin and fibrinogen levels, and metachromatic cell counts correlated with tryptase. In asthmatics, IL-5 correlated with eosinophil counts. There was a significant negative correlation between sputum indices and expiratory flows and methacholine PC20. Thus, the methods of measuring cell and fluid phase markers in induced sputum used in this study are reproducible and valid. They can therefore be used to reliably measure these indices of airway inflammation.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Hypothesis: does COPD have an autoimmune component?

                Bookmark

                Author and article information

                Journal
                Int J Chron Obstruct Pulmon Dis
                Int J Chron Obstruct Pulmon Dis
                International Journal of COPD
                International Journal of Chronic Obstructive Pulmonary Disease
                Dove Medical Press
                1176-9106
                1178-2005
                2019
                11 April 2019
                : 14
                : 835-852
                Affiliations
                [1 ]State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, People’s Republic of China, chenrc@ 123456vip.163.com
                [2 ]Respiratory Medicine Department, Guangzhou Panyu Central Hospital, Guangzhou 511400, People’s Republic of China
                Author notes
                Correspondence: Rongchang Chen, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, No 151, Yanjiang Road, Guangzhou 510120, People’s Republic of China, Tel/fax +86 20 8306 2882, Email chenrc@ 123456vip.163.com
                [*]

                These authors contributed equally to this work

                Article
                copd-14-835
                10.2147/COPD.S187661
                6469484
                © 2019 Wang et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Comments

                Comment on this article