258
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tolerance to drought and salt stress in plants: Unraveling the signaling networks

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tolerance of plants to abiotic stressors such as drought and salinity is triggered by complex multicomponent signaling pathways to restore cellular homeostasis and promote survival. Major plant transcription factor families such as bZIP, NAC, AP2/ERF, and MYB orchestrate regulatory networks underlying abiotic stress tolerance. Sucrose non-fermenting 1-related protein kinase 2 and mitogen-activated protein kinase pathways contribute to initiation of stress adaptive downstream responses and promote plant growth and development. As a convergent point of multiple abiotic cues, cellular effects of environmental stresses are not only imbalances of ionic and osmotic homeostasis but also impaired photosynthesis, cellular energy depletion, and redox imbalances. Recent evidence of regulatory systems that link sensing and signaling of environmental conditions and the intracellular redox status have shed light on interfaces of stress and energy signaling. ROS (reactive oxygen species) cause severe cellular damage by peroxidation and de-esterification of membrane-lipids, however, current models also define a pivotal signaling function of ROS in triggering tolerance against stress. Recent research advances suggest and support a regulatory role of ROS in the cross talks of stress triggered hormonal signaling such as the abscisic acid pathway and endogenously induced redox and metabolite signals. Here, we discuss and review the versatile molecular convergence in the abiotic stress responsive signaling networks in the context of ROS and lipid-derived signals and the specific role of stomatal signaling.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins.

          Type 2C protein phosphatases (PP2Cs) are vitally involved in abscisic acid (ABA) signaling. Here, we show that a synthetic growth inhibitor called pyrabactin functions as a selective ABA agonist. Pyrabactin acts through PYRABACTIN RESISTANCE 1 (PYR1), the founding member of a family of START proteins called PYR/PYLs, which are necessary for both pyrabactin and ABA signaling in vivo. We show that ABA binds to PYR1, which in turn binds to and inhibits PP2Cs. We conclude that PYR/PYLs are ABA receptors functioning at the apex of a negative regulatory pathway that controls ABA signaling by inhibiting PP2Cs. Our results illustrate the power of the chemical genetic approach for sidestepping genetic redundancy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulators of PP2C phosphatase activity function as abscisic acid sensors.

            The plant hormone abscisic acid (ABA) acts as a developmental signal and as an integrator of environmental cues such as drought and cold. Key players in ABA signal transduction include the type 2C protein phosphatases (PP2Cs) ABI1 and ABI2, which act by negatively regulating ABA responses. In this study, we identify interactors of ABI1 and ABI2 which we have named regulatory components of ABA receptor (RCARs). In Arabidopsis, RCARs belong to a family with 14 members that share structural similarity with class 10 pathogen-related proteins. RCAR1 was shown to bind ABA, to mediate ABA-dependent inactivation of ABI1 or ABI2 in vitro, and to antagonize PP2C action in planta. Other RCARs also mediated ABA-dependent regulation of ABI1 and ABI2, consistent with a combinatorial assembly of receptor complexes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genes and salt tolerance: bringing them together.

              Rana Munns (2005)
              Salinity tolerance comes from genes that limit the rate of salt uptake from the soil and the transport of salt throughout the plant, adjust the ionic and osmotic balance of cells in roots and shoots, and regulate leaf development and the onset of senescence. This review lists some candidate genes for salinity tolerance, and draws together hypotheses about the functions of these genes and the specific tissues in which they might operate. Little has been revealed by gene expression studies so far, perhaps because the studies are not tissue-specific, and because the treatments are often traumatic and unnatural. Suggestions are made to increase the value of molecular studies in identifying genes that are important for salinity tolerance.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                22 April 2014
                2014
                : 5
                : 151
                Affiliations
                Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University Bielefeld, Germany
                Author notes

                Edited by: Mukesh Jain, National Institute of Plant Genome Research, India

                Reviewed by: Peter Langridge, Australian Centre for Plant Functional Genomics, Australia; Fan Chen, Institute of Genetics and Developmental Biology – Chinese Academy of Sciences, China

                *Correspondence: Dortje Golldack, Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany e-mail: dortje.golldack@ 123456uni-bielefeld.de

                This article was submitted to Plant Genetics and Genomics, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2014.00151
                4001066
                24795738
                af8baa76-6df9-4758-a528-7b8eec084226
                Copyright © 2014 Golldack, Li, Mohan and Probst.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 January 2014
                : 01 April 2014
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 118, Pages: 10, Words: 0
                Categories
                Plant Science
                Review Article

                Plant science & Botany
                transcription factor, arabidopsis,lipid signaling,ros,drought,map kinase
                Plant science & Botany
                transcription factor, arabidopsis, lipid signaling, ros, drought, map kinase

                Comments

                Comment on this article