+1 Recommend
2 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ageing and the immune system: focus on macrophages

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          A fully functioning immune system is essential in order to maintain good health. However, the immune system deteriorates with advancing age, and this contributes to increased susceptibility to infection, autoimmunity, and cancer in the older population. Progress has been made in identifying age-related defects in the adaptive immune system. In contrast, relatively little research has been carried out on the impact of ageing on the innate immune response. This area requires further research as the innate immune system plays a crucial role in protection against infection and represents a first line of defence. Macrophages are central effector cells of the innate immune system and have many diverse functions. As a result, age-related impairments in macrophage function are likely to have important consequences for the health of the older population. It has been reported that ageing in macrophages impacts on many processes including toll-like receptor signalling, polarisation, phagocytosis, and wound repair. A detailed understanding of the impact of ageing on macrophages is required in order to develop therapeutics that will boost immune responses in the older population.

          Related collections

          Most cited references 68

          • Record: found
          • Abstract: found
          • Article: not found

          Development of monocytes, macrophages, and dendritic cells.

          Monocytes and macrophages are critical effectors and regulators of inflammation and the innate immune response, the immediate arm of the immune system. Dendritic cells initiate and regulate the highly pathogen-specific adaptive immune responses and are central to the development of immunologic memory and tolerance. Recent in vivo experimental approaches in the mouse have unveiled new aspects of the developmental and lineage relationships among these cell populations. Despite this, the origin and differentiation cues for many tissue macrophages, monocytes, and dendritic cell subsets in mice, and the corresponding cell populations in humans, remain to be elucidated.
            • Record: found
            • Abstract: found
            • Article: not found

            Recognition of microorganisms and activation of the immune response.

            The mammalian immune system has innate and adaptive components, which cooperate to protect the host against microbial infections. The innate immune system consists of functionally distinct 'modules' that evolved to provide different forms of protection against pathogens. It senses pathogens through pattern-recognition receptors, which trigger the activation of antimicrobial defences and stimulate the adaptive immune response. The adaptive immune system, in turn, activates innate effector mechanisms in an antigen-specific manner. The connections between the various immune components are not fully understood, but recent progress brings us closer to an integrated view of the immune system and its function in host defence.
              • Record: found
              • Abstract: found
              • Article: not found

              Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences.

              Recent studies have described the development of distinct functional subsets of macrophages in association with cancer, autoimmune disease, and chronic infections. Based on the ability of Th1 vs Th2 cytokines to promote opposing activities in macrophages, it has been proposed that macrophages develop into either type 1 inflammatory or type 2 anti-inflammatory subsets. As an alternative to the concept of subset development, we propose that macrophages, in response to changes in their tissue environment, can reversibly and progressively change the pattern of functions that they express. As demonstrated herein, macrophages can reversibly shift their functional phenotype through a multitude of patterns in response to changes in cytokine environment. Macrophages display distinct functional patterns after treatment with IFN-gamma, IL-12, IL-4, or IL-10 and additional functional patterns are displayed depending on whether the cytokine is present alone or with other cytokines and whether the cytokines are added before or concomitantly with the activating stimulus (LPS). Sequential treatment of macrophages with multiple cytokines results in a progression through multiple functional phenotypes. This ability to adapt to changing cytokine environments has significant in vivo relevance, as evidenced by the demonstration that macrophage functional phenotypes established in vivo in aged or tumor-bearing mice can be altered by changing their microenvironment. A concept of functional adaptivity is proposed that has important implications for therapeutic targeting of macrophages in chronic diseases that result in the dominance of particular functional phenotypes of macrophages that play a significant role in disease pathology.

                Author and article information

                European Journal of Microbiology and Immunology
                Akadémiai Kiadó
                1 March 2015
                26 March 2015
                : 5
                : 1 ( otherID: VRG7W6904000 )
                : 14-24
                [ 1 ] Queen’s University Belfast Centre for Infection and Immunity 97 Lisburn Road Belfast, Northern Ireland BT9 7AE UK
                Review Article


                Comment on this article