2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of an immune gene signature for predicting the prognosis of patients with uterine corpus endometrial carcinoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Uterine corpus endometrial carcinoma (UCEC) is a frequent gynecological malignancy with a poor prognosis particularly at an advanced stage. Herein, this study aims to construct prognostic markers of UCEC based on immune-related genes to predict the prognosis of UCEC.

          Methods

          We analyzed expression data of 575 UCEC patients from The Cancer Genome Atlas database and immune genes from the ImmPort database, which were used for generation and validation of the signature. We constructed a transcription factor regulatory network based on Cistrome databases, and also performed functional enrichment and pathway analyses for the differentially expressed immune genes. Moreover, the prognostic value of 410 immune genes was determined using the Cox regression analysis. We then constructed and verified a prognostic signature. Finally, we performed immune infiltration analysis using TIMER-generating immune cell content.

          Results

          The immune cell microenvironment as well as the PI3K-Akt, and MARK signaling pathways were involved in UCEC development. The established prognostic signature revealed a ten-gene prognostic signature, comprising of PDIA3, LTA, PSMC4, TNF, SBDS, HDGF, HTR3E, NR3C1, PGR, and CBLC. This signature showed a strong prognostic ability in both the training and testing sets and thus can be used as an independent tool to predict the prognosis of UCEC. In addition, levels of B cells and neutrophils were significantly correlated with the patient’s risk score, while the expression of ten genes was associated with immune cell infiltrates.

          Conclusions

          In summary, the ten-gene prognostic signature may guide the selection of the immunotherapy for UCEC.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries

          This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions. There will be an estimated 18.1 million new cancer cases (17.0 million excluding nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding nonmelanoma skin cancer) in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths), closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality. The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors. It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries. The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts. CA: A Cancer Journal for Clinicians 2018;0:1-31. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            limma powers differential expression analyses for RNA-sequencing and microarray studies

            limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells.

              Recent clinical successes of cancer immunotherapy necessitate the investigation of the interaction between malignant cells and the host immune system. However, elucidation of complex tumor-immune interactions presents major computational and experimental challenges. Here, we present Tumor Immune Estimation Resource (TIMER; cistrome.shinyapps.io/timer) to comprehensively investigate molecular characterization of tumor-immune interactions. Levels of six tumor-infiltrating immune subsets are precalculated for 10,897 tumors from 32 cancer types. TIMER provides 6 major analytic modules that allow users to interactively explore the associations between immune infiltrates and a wide spectrum of factors, including gene expression, clinical outcomes, somatic mutations, and somatic copy number alterations. TIMER provides a user-friendly web interface for dynamic analysis and visualization of these associations, which will be of broad utilities to cancer researchers. Cancer Res; 77(21); e108-10. ©2017 AACR.
                Bookmark

                Author and article information

                Contributors
                13592854369@163.com
                YuhuaZhengcn@outlook.com
                Journal
                Cancer Cell Int
                Cancer Cell Int
                Cancer Cell International
                BioMed Central (London )
                1475-2867
                9 November 2020
                9 November 2020
                2020
                : 20
                : 541
                Affiliations
                [1 ]GRID grid.490274.c, Department of Gynecology, , Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, ; Foshan, 528000 Guangdong China
                [2 ]GRID grid.490274.c, Department of Obstetrics and Gynecology, , Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, ; Foshan, 528000 Guangdong China
                [3 ]GRID grid.284723.8, ISNI 0000 0000 8877 7471, School of Medicine, , Southern Medical University, ; Guangzhou, 510515 China
                [4 ]GRID grid.415644.6, ISNI 0000 0004 1798 6662, Department of Gynecology, , Shaoxing People’s Hospital, ; Shaoxing, 312000 Zhejiang China
                Author information
                http://orcid.org/0000-0002-7253-6686
                Article
                1560
                10.1186/s12935-020-01560-w
                7650210
                33292199
                af9852c2-afb0-469c-aafc-289582c6feb8
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 6 March 2020
                : 17 September 2020
                Categories
                Primary Research
                Custom metadata
                © The Author(s) 2020

                Oncology & Radiotherapy
                uterine corpus endometrial carcinoma,tcga,immune gene,prognosis
                Oncology & Radiotherapy
                uterine corpus endometrial carcinoma, tcga, immune gene, prognosis

                Comments

                Comment on this article