1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      StructEdit: Learning Structural Shape Variations

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Learning to encode differences in the geometry and (topological) structure of the shapes of ordinary objects is key to generating semantically plausible variations of a given shape, transferring edits from one shape to another, and many other applications in 3D content creation. The common approach of encoding shapes as points in a high-dimensional latent feature space suggests treating shape differences as vectors in that space. Instead, we treat shape differences as primary objects in their own right and propose to encode them in their own latent space. In a setting where the shapes themselves are encoded in terms of fine-grained part hierarchies, we demonstrate that a separate encoding of shape deltas or differences provides a principled way to deal with inhomogeneities in the shape space due to different combinatorial part structures, while also allowing for compactness in the representation, as well as edit abstraction and transfer. Our approach is based on a conditional variational autoencoder for encoding and decoding shape deltas, conditioned on a source shape. We demonstrate the effectiveness and robustness of our approach in multiple shape modification and generation tasks, and provide comparison and ablation studies on the PartNet dataset, one of the largest publicly available 3D datasets.

          Related collections

          Author and article information

          Journal
          25 November 2019
          Article
          1911.11098
          af9cdf72-a74e-4e70-bee6-2e66f8b1b60a

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          cs.CV cs.CG cs.GR

          Computer vision & Pattern recognition,Theoretical computer science,Graphics & Multimedia design

          Comments

          Comment on this article