11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The phylogenetic diversity and community structure of members of the gut anaerobic fungi (AF) (phylum Neocallimastigomycota) were investigated in 30 different herbivore species that belong to 10 different mammalian and reptilian families using the internal transcribed spacer region-1 (ITS-1) ribosomal RNA (rRNA) region as a phylogenetic marker. A total of 267 287 sequences representing all known anaerobic fungal genera were obtained in this study. Sequences affiliated with the genus Piromyces were the most abundant, being encountered in 28 different samples, and representing 36% of the sequences obtained. On the other hand, sequences affiliated with the genera Cyllamyces and Orpinomyces were the least abundant, being encountered in 2, and 8 samples, and representing 0.7%, and 1.1% of the total sequences obtained, respectively. Further, 38.3% of the sequences obtained did not cluster with previously identified genera and formed eight phylogenetically distinct novel anaerobic fungal lineages. Some of these novel lineages were widely distributed (for example NG1 and NG3), whereas others were animal specific, being encountered in only one or two animals (for example NG4, NG6, NG7, and NG8). The impact of various physiological and environmental factors on the diversity and community structure of AF was examined. The results suggest that animal host phylogeny exerts the most significant role on shaping anaerobic fungal diversity and community composition. These results greatly expand the documented global phylogenetic diversity of members of this poorly studied group of fungi that has an important function in initiating plant fiber degradation during fermentative digestion in ruminant and non-ruminant herbivores.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: not found
          • Article: not found

          Karl Pearson and the Chi-Squared Test

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Use of Maximum Likelihood Estimates in $\chi^2$ Tests for Goodness of Fit

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynamics of initial colonization of nonconserved perennial ryegrass by anaerobic fungi in the bovine rumen.

              Anaerobic fungi (Neocallimastigales) are active degraders of fibrous plant material in the rumen. However, only limited information is available relating to how quickly they colonize ingested feed particles. The aim of this study was to determine the dynamics of initial colonization of forage by anaerobic fungi in the rumen and the impact of different postsampling wash procedures used to remove loosely associated microorganisms. Neocallimastigales-specific molecular techniques were optimized to ensure maximal coverage before application to assess the population size (quantitative PCR) and composition (automated ribosomal intergenic spacer analysis) of the colonizing anaerobic fungi. Colonization of perennial ryegrass (PRG) was evident within 5 min, with no consistent effect of time or wash procedure on fungal population composition. Wash procedure had no effect on population size unlike time, which had a significant effect. Colonizing fungal population size continued to increase over the incubation period after an initial lag of c. 4 min. This dynamic differs from that reported previously for rumen bacteria, where substantial colonization of PRG occurred within 5 min. The observed delay in colonization of plant material by anaerobic fungi is suggested to be primarily mediated by the time taken for fungal zoospores to locate, attach and encyst on plant material.
                Bookmark

                Author and article information

                Journal
                The ISME Journal
                ISME J
                Springer Science and Business Media LLC
                1751-7362
                1751-7370
                October 2010
                April 22 2010
                October 2010
                : 4
                : 10
                : 1225-1235
                Article
                10.1038/ismej.2010.49
                20410935
                afa3f517-069b-4497-9d2b-6877a4139b1f
                © 2010

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article