5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Protein Phosphatase 1 Inhibitor-1 Deficiency Reduces Phosphorylation of Renal NaCl Cotransporter and Causes Arterial Hypotension

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Human hypertension caused by mutations in WNK kinases.

          Hypertension is a major public health problem of largely unknown cause. Here, we identify two genes causing pseudohypoaldosteronism type II, a Mendelian trait featuring hypertension, increased renal salt reabsorption, and impaired K+ and H+ excretion. Both genes encode members of the WNK family of serine-threonine kinases. Disease-causing mutations in WNK1 are large intronic deletions that increase WNK1 expression. The mutations in WNK4 are missense, which cluster in a short, highly conserved segment of the encoded protein. Both proteins localize to the distal nephron, a kidney segment involved in salt, K+, and pH homeostasis. WNK1 is cytoplasmic, whereas WNK4 localizes to tight junctions. The WNK kinases and their associated signaling pathway(s) may offer new targets for the development of antihypertensive drugs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gitelman's variant of Bartter's syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter.

            Maintenance of fluid and electrolyte homeostasis is critical for normal neuromuscular function. Bartter's syndrome is an autosomal recessive disease characterized by diverse abnormalities in electrolyte homeostasis including hypokalaemic metabolic alkalosis; Gitelman's syndrome represents the predominant subset of Bartter's patients having hypomagnesemia and hypocalciuria. We now demonstrate complete linkage of Gitelman's syndrome to the locus encoding the renal thiazide-sensitive Na-Cl cotransporter, and identify a wide variety of non-conservative mutations, consistent with loss of function alleles, in affected subjects. These findings demonstrate the molecular basis of Gitelman's syndrome. We speculate that these mutant alleles lead to reduced sodium chloride reabsorption in the more common heterozygotes, potentially protecting against development of hypertension.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Mutations in Kelch-like 3 and Cullin 3 cause hypertension and electrolyte abnormalities

              Hypertension affects one billion people and is a principal reversible risk factor for cardiovascular disease. A rare Mendelian syndrome, pseudohypoaldosteronism type II (PHAII), featuring hypertension, hyperkalemia, and metabolic acidosis, has revealed previously unrecognized physiology orchestrating the balance between renal salt reabsorption versus K+ and H+ excretion 1 . We used exome sequencing to identify mutations in Kelch-like 3 (KLHL3) or Cullin 3 (CUL3) in 41 PHAII kindreds. KLHL3 mutations are either recessive or dominant, while CUL3 mutations are dominant and predominantly de novo. CUL3 and BTB-Kelch proteins such as KLHL3 are components of Cullin/RING E3 ligase complexes (CRLs) that ubiquitinate substrates bound to Kelch propeller domains 2–8 . Dominant KLHL3 mutations are clustered in short segments within the Kelch propeller and BTB domains implicated in substrate 9 and Cullin 5 binding, respectively. Diverse CUL3 mutations all result in skipping of exon 9, producing an in-frame deletion. Because dominant KLHL3 and CUL3 mutations both phenocopy recessive loss-of-function KLHL3 mutations, they may abrogate ubiquitination of KLHL3 substrates. Disease features are reversed by thiazide diuretics, which inhibit the Na-Cl cotransporter (NCC) in the distal nephron of the kidney; KLHL3 and CUL3 are expressed in this location, suggesting a mechanistic link between KLHL3/CUL3 mutations, increased Na-Cl reabsorption, and disease pathogenesis. These findings demonstrate the utility of exome sequencing in disease gene identification despite combined complexities of locus heterogeneity, mixed models of transmission, and frequent de novo mutation, and establish a fundamental role for KLHL3/CUL3 in blood pressure, K+, and pH homeostasis.
                Bookmark

                Author and article information

                Journal
                Journal of the American Society of Nephrology
                JASN
                American Society of Nephrology (ASN)
                1046-6673
                1533-3450
                February 28 2014
                March 2014
                March 2014
                November 14 2013
                : 25
                : 3
                : 511-522
                Article
                10.1681/ASN.2012121202
                24231659
                afac53d4-6efd-4545-90ff-75d7cbf2f3e3
                © 2013
                History

                Comments

                Comment on this article