2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Novel roles for β-arrestins in the regulation of pharmacological sequestration to predict agonist-induced desensitization of dopamine D3receptors : Pharmacological sequestration of dopamine D3receptor

      1 , 1 , 1 , 2 , 1
      British Journal of Pharmacology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          beta-Arrestin: a protein that regulates beta-adrenergic receptor function.

          Homologous or agonist-specific desensitization of beta-adrenergic receptors is thought to be mediated by a specific kinase, the beta-adrenergic receptor kinase (beta ARK). However, recent data suggest that a cofactor is required for this kinase to inhibit receptor function. The complementary DNA for such a cofactor was cloned and found to encode a 418-amino acid protein homologous to the retinal protein arrestin. The protein, termed beta-arrestin, was expressed and partially purified. It inhibited the signaling function of beta ARK-phosphorylated beta-adrenergic receptors by more than 75 percent, but not that of rhodopsin. It is proposed that beta-arrestin in concert with beta ARK effects homologous desensitization of beta-adrenergic receptors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Distribution of dopamine D3 receptor expressing neurons in the human forebrain: comparison with D2 receptor expressing neurons.

            The dopamine D2 and D3 receptors are members of the D2 subfamily that includes the D2, D3 and D4 receptor. In the rat, the D3 receptor exhibits a distribution restricted to mesolimbic regions with little overlap with the D2 receptor. Receptor binding and nonisotopic in situ hybridization were used to study the distribution of the D3 receptors and neurons positive for D3 mRNA in comparison to the D2 receptor/mRNA in subcortical regions of the human brain. D2 binding sites were detected in all brain areas studied, with the highest concentration found in the striatum followed by the nucleus accumbens, external segment of the globus pallidus, substantia nigra and ventral tegmental area, medial preoptic area and tuberomammillary nucleus of the hypothalamus. In most areas the presence of D2 receptor sites coincided with the presence of neurons positive for its mRNA. D3 binding sites and D3 mRNA positive neurons were most abundant in the limbic striatum and efferent structures, such as the nucleus accumbens, ventral striatum, substantia nigra, internal segment of the globus pallidus, anteroventral nucleus of the thalamus, and rostral pars reticulata of the substantia nigra. One important difference from the rat is that D3 receptors were virtually absent in the ventral tegmental area. D3 receptor and D3 mRNA positive neurons were observed in sensory, hormonal, and association regions such as the nucleus basalis, anteroventral, mediodorsal, and geniculate nuclei of the thalamus, mammillary nuclei, the basolateral, basomedial, and cortical nuclei of the amygdala. As revealed by simultaneous labeling for D3 and D2 mRNA, D3 mRNA was often expressed in D2 mRNA positive neurons. Neurons that solely expressed D2 mRNA were numerous and regionally widespread, whereas only occasional D3-positive-D2-negative cells were observed. The regions of relatively higher expression of the D3 receptor and its mRNA appeared linked through functional circuits, but co-expression of D2 and D3 mRNA suggests a functional convergence in many regions of the signals mediated by the two receptor subtypes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Beta-arrestin2, a novel member of the arrestin/beta-arrestin gene family.

              Homologous or agonist-specific desensitization of beta 2-adrenergic receptors (beta 2AR) is mediated by the beta-adrenergic receptor kinase (beta ARK) which specifically phosphorylates the agonist-occupied form of the receptor. However, the capacity of beta ARK-phosphorylated beta 2AR to stimulate Gs in a reconstituted system is only minimally impaired. Recently, a protein termed beta-arrestin, was cloned from a bovine brain cDNA library and found to quench phosphorylated beta 2AR-coupling to Gs. Utilizing a low stringency hybridization technique to screen a rat brain cDNA library, we have now isolated cDNA clones representing two distinct beta-arrestin-like genes. One of the cDNAs is the rat homolog of bovine beta-arrestin (beta-arrestin1). In addition, we have isolated a cDNA clone encoding a novel, beta-arrestin-related protein which we have termed beta-arrestin2. Overall, beta-arrestin2 exhibits 78% amino acid identity with beta-arrestin1. The primary structure of these proteins delineates a family of proteins that regulates receptor coupling to G proteins. The capacity of purified beta-arrestin1, beta-arrestin2, and arrestin to inhibit the coupling of phosphorylated receptors to their respective G proteins were assessed in a reconstituted beta 2AR-Gs system and in a reconstituted rhodopsin-GT system. beta-Arrestin2 was equipotent to beta-arrestin1 and specifically inhibited beta 2AR function. Conversely, arrestin inhibited rhodopsin coupling to GT, whereas beta-arrestin1 and beta-arrestin2 were at least 20-fold less potent in this system. beta-Arrestin1 and beta-arrestin2 are predominantly localized in neuronal tissues and in the spleen. However, low mRNA levels can be detected in most peripheral tissues. In the central nervous system, beta-arrestin2 appears to be even more abundant than beta-arrestin1. Immunohistochemical analysis of the tissue distribution of beta-arrestin1 and beta-arrestin2 in rat brain shows extensive, but heterogenous, neuronal labeling of the two proteins. They are found in several neuronal pathways suggesting that they have relatively broad receptor specificity regulating many G protein-coupled receptors. Furthermore, immunoelectron microscopy shows that the beta-arrestins are appropriately situated at postsynaptic sites to act in concert with beta ARK to regulate G protein-coupled neurotransmitter receptors.
                Bookmark

                Author and article information

                Journal
                British Journal of Pharmacology
                Br J Pharmacol
                Wiley
                00071188
                November 2013
                November 2013
                October 15 2013
                : 170
                : 5
                : 1112-1129
                Affiliations
                [1 ]Department of Pharmacology; College of Pharmacy; Drug Development Research Institute; Chonnam National University; Gwang-Ju; 500-757; Korea
                [2 ]Department of Cell Biology; Duke University Medical Center; Durham; NC; 27710; USA
                Article
                10.1111/bph.12357
                23992580
                afb3ac30-a377-4d42-8115-5f0425a7279e
                © 2013

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article