Blog
About

  • Record: found
  • Abstract: found
  • Article: not found

BioGRID: a general repository for interaction datasets

Read this article at

ScienceOpenPublisherPMC
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Access to unified datasets of protein and genetic interactions is critical for interrogation of gene/protein function and analysis of global network properties. BioGRID is a freely accessible database of physical and genetic interactions available at . BioGRID release version 2.0 includes >116 000 interactions from Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens. Over 30 000 interactions have recently been added from 5778 sources through exhaustive curation of the Saccharomyces cerevisiae primary literature. An internally hyper-linked web interface allows for rapid search and retrieval of interaction data. Full or user-defined datasets are freely downloadable as tab-delimited text files and PSI-MI XML. Pre-computed graphical layouts of interactions are available in a variety of file formats. User-customized graphs with embedded protein, gene and interaction attributes can be constructed with a visualization system called Osprey that is dynamically linked to the BioGRID.

      Related collections

      Most cited references 32

      • Record: found
      • Abstract: found
      • Article: not found

      The Gene Ontology (GO) database and informatics resource.

      The Gene Ontology (GO) project (http://www. geneontology.org/) provides structured, controlled vocabularies and classifications that cover several domains of molecular and cellular biology and are freely available for community use in the annotation of genes, gene products and sequences. Many model organism databases and genome annotation groups use the GO and contribute their annotation sets to the GO resource. The GO database integrates the vocabularies and contributed annotations and provides full access to this information in several formats. Members of the GO Consortium continually work collectively, involving outside experts as needed, to expand and update the GO vocabularies. The GO Web resource also provides access to extensive documentation about the GO project and links to applications that use GO data for functional analyses.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Functional organization of the yeast proteome by systematic analysis of protein complexes.

        Most cellular processes are carried out by multiprotein complexes. The identification and analysis of their components provides insight into how the ensemble of expressed proteins (proteome) is organized into functional units. We used tandem-affinity purification (TAP) and mass spectrometry in a large-scale approach to characterize multiprotein complexes in Saccharomyces cerevisiae. We processed 1,739 genes, including 1,143 human orthologues of relevance to human biology, and purified 589 protein assemblies. Bioinformatic analysis of these assemblies defined 232 distinct multiprotein complexes and proposed new cellular roles for 344 proteins, including 231 proteins with no previous functional annotation. Comparison of yeast and human complexes showed that conservation across species extends from single proteins to their molecular environment. Our analysis provides an outline of the eukaryotic proteome as a network of protein complexes at a level of organization beyond binary interactions. This higher-order map contains fundamental biological information and offers the context for a more reasoned and informed approach to drug discovery.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae.

          Two large-scale yeast two-hybrid screens were undertaken to identify protein-protein interactions between full-length open reading frames predicted from the Saccharomyces cerevisiae genome sequence. In one approach, we constructed a protein array of about 6,000 yeast transformants, with each transformant expressing one of the open reading frames as a fusion to an activation domain. This array was screened by a simple and automated procedure for 192 yeast proteins, with positive responses identified by their positions in the array. In a second approach, we pooled cells expressing one of about 6,000 activation domain fusions to generate a library. We used a high-throughput screening procedure to screen nearly all of the 6,000 predicted yeast proteins, expressed as Gal4 DNA-binding domain fusion proteins, against the library, and characterized positives by sequence analysis. These approaches resulted in the detection of 957 putative interactions involving 1,004 S. cerevisiae proteins. These data reveal interactions that place functionally unclassified proteins in a biological context, interactions between proteins involved in the same biological function, and interactions that link biological functions together into larger cellular processes. The results of these screens are shown here.
            Bookmark

            Author and article information

            Affiliations
            simpleOntario Cancer Institute, Princess Margaret Hospital 610 University Avenue, Toronto, Ontario, Canada M5G 2M9
            1simpleSamuel Lunenfeld Research Institute, Mount Sinai Hospital Toronto, Ontario, Canada M5G 1X5
            2simpleDepartment of Medical Genetics and Microbiology, University of Toronto Toronto, Ontario, Canada M5S 1A8
            Author notes
            *To whom correspondence should be addressed. Tel: +416 586 8371; Fax: +416 586 8869; Email: tyers@ 123456mshri.on.ca

            The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors

            Journal
            Nucleic Acids Res
            Nucleic Acids Research
            Nucleic Acids Research
            Oxford University Press
            0305-1048
            1362-4962
            01 January 2006
            01 January 2006
            28 December 2005
            : 34
            : Database issue
            : D535-D539
            1347471
            10.1093/nar/gkj109
            16381927
            © The Author 2006. Published by Oxford University Press. All rights reserved

            The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@ 123456oxfordjournals.org

            Categories
            Article

            Genetics

            Comments

            Comment on this article