1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enzymatic diagnosis of Pompe disease: lessons from 28 years of experience

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pompe disease is a lysosomal and neuromuscular disorder caused by deficiency of acid alpha-glucosidase (GAA), and causes classic infantile, childhood onset, or adulthood onset phenotypes. The biochemical diagnosis is based on GAA activity assays in dried blood spots, leukocytes, or fibroblasts. Diagnosis can be complicated by the existence of pseudodeficiencies, i.e., GAA variants that lower GAA activity but do not cause Pompe disease. A large-scale comparison between these assays for patient samples, including exceptions and borderline cases, along with clinical diagnoses has not been reported so far. Here we analyzed GAA activity in a total of 1709 diagnostic cases over the past 28 years using a total of 2591 analyses and we confirmed the clinical diagnosis in 174 patients. We compared the following assays: leukocytes using glycogen or 4MUG as substrate, fibroblasts using 4MUG as substrate, and dried blood spots using 4MUG as substrate. In 794 individuals, two or more assays were performed. We found that phenotypes could only be distinguished using fibroblasts with 4MUG as substrate. Pseudodeficiencies caused by the GAA2 allele could be ruled out using 4MUG rather than glycogen as substrate in leukocytes or fibroblasts. The Asian pseudodeficiency could only be ruled out in fibroblasts using 4MUG as substrate. We conclude that fibroblasts using 4MUG as substrate provides the most reliable assay for biochemical diagnosis and can serve to validate results from leukocytes or dried blood spots.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Measurement of protein using bicinchoninic acid

          Bicinchoninic acid, sodium salt, is a stable, water-soluble compound capable of forming an intense purple complex with cuprous ion (Cu1+) in an alkaline environment. This reagent forms the basis of an analytical method capable of monitoring cuprous ion produced in the reaction of protein with alkaline Cu2+ (biuret reaction). The color produced from this reaction is stable and increases in a proportional fashion over a broad range of increasing protein concentrations. When compared to the method of Lowry et al., the results reported here demonstrate a greater tolerance of the bicinchoninate reagent toward such commonly encountered interferences as nonionic detergents and simple buffer salts. The stability of the reagent and resulting chromophore also allows for a simplified, one-step analysis and an enhanced flexibility in protocol selection. This new method maintains the high sensitivity and low protein-to-protein variation associated with the Lowry technique.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HGVS Recommendations for the Description of Sequence Variants: 2016 Update.

            The consistent and unambiguous description of sequence variants is essential to report and exchange information on the analysis of a genome. In particular, DNA diagnostics critically depends on accurate and standardized description and sharing of the variants detected. The sequence variant nomenclature system proposed in 2000 by the Human Genome Variation Society has been widely adopted and has developed into an internationally accepted standard. The recommendations are currently commissioned through a Sequence Variant Description Working Group (SVD-WG) operating under the auspices of three international organizations: the Human Genome Variation Society (HGVS), the Human Variome Project (HVP), and the Human Genome Organization (HUGO). Requests for modifications and extensions go through the SVD-WG following a standard procedure including a community consultation step. Version numbers are assigned to the nomenclature system to allow users to specify the version used in their variant descriptions. Here, we present the current recommendations, HGVS version 15.11, and briefly summarize the changes that were made since the 2000 publication. Most focus has been on removing inconsistencies and tightening definitions allowing automatic data processing. An extensive version of the recommendations is available online, at http://www.HGVS.org/varnomen.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pompe's disease.

              Pompe's disease, glycogen-storage disease type II, and acid maltase deficiency are alternative names for the same metabolic disorder. It is a pan-ethnic autosomal recessive trait characterised by acid alpha-glucosidase deficiency leading to lysosomal glycogen storage. Pompe's disease is also regarded as a muscular disorder, but the generalised storage of glycogen causes more than mobility and respiratory problems. The clinical spectrum is continuous and broad. First symptoms can present in infants, children, and adults. Cardiac hypertrophy is a key feature of classic infantile Pompe's disease. For a long time, there was no means to stop disease progression, but the approval of enzyme replacement therapy has substantially changed the prospects for patients. With this new development, the disease is now among the small but increasing number of lysosomal storage disorders, for which treatment has become a reality. This review is meant to raise general awareness, to present and discuss the latest insights in disease pathophysiology, and to draw attention to new developments about diagnosis and care. We also discuss the developments that led to the approval of enzyme replacement therapy with recombinant human alpha-glucosidase from Chinese hamster ovary cells (alglucosidase alfa) by the US Food and Drug Administration and European Medicines Agency in 2006, and review clinical practice.
                Bookmark

                Author and article information

                Contributors
                w.pijnappel@erasmusmc.nl
                Journal
                Eur J Hum Genet
                Eur J Hum Genet
                European Journal of Human Genetics
                Springer International Publishing (Cham )
                1018-4813
                1476-5438
                8 November 2020
                8 November 2020
                March 2021
                : 29
                : 3
                : 434-446
                Affiliations
                [1 ]GRID grid.5645.2, ISNI 000000040459992X, Department of Pediatrics, , Erasmus MC University Medical Center, ; Rotterdam, The Netherlands
                [2 ]GRID grid.5645.2, ISNI 000000040459992X, Department of Clinical Genetics, , Erasmus MC University Medical Center, ; Rotterdam, The Netherlands
                [3 ]GRID grid.5645.2, ISNI 000000040459992X, Center for Lysosomal and Metabolic Diseases, , Erasmus MC University Medical Center, ; Rotterdam, The Netherlands
                [4 ]GRID grid.5645.2, ISNI 000000040459992X, Department of Neurology, , Erasmus MC University Medical Center, ; Rotterdam, The Netherlands
                Author information
                http://orcid.org/0000-0001-9525-7260
                http://orcid.org/0000-0001-9161-3301
                http://orcid.org/0000-0002-7042-2482
                Article
                752
                10.1038/s41431-020-00752-2
                7940434
                33162552
                afdc5657-8718-48ef-a1b7-1cf6b9a1c525
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 10 March 2020
                : 3 October 2020
                : 20 October 2020
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100003593, Ministry of Science, Technology and Innovation | Conselho Nacional de Desenvolvimento Científico e Tecnológico (National Council for Scientific and Technological Development);
                Funded by: The Sophia Foundation for Medical Research (SSWO; project number s17-32), Metakids (project number 2016 - 063 and 2018-082), and Stofwisselkracht.
                Funded by: FundRef https://doi.org/10.13039/501100009622, Stichting Zeldzame Ziekten Fonds (Dutch Rare Diseases Fund);
                Categories
                Article
                Custom metadata
                © The Author(s), under exclusive licence to European Society of Human Genetics 2021

                Genetics
                diagnosis,disease genetics
                Genetics
                diagnosis, disease genetics

                Comments

                Comment on this article