52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Gut microbiome, obesity, and metabolic dysfunction

      ,
      Journal of Clinical Investigation
      American Society for Clinical Investigation

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The prevalence of obesity and related disorders such as metabolic syndrome has vastly increased throughout the world. Recent insights have generated an entirely new perspective suggesting that our microbiota might be involved in the development of these disorders. Studies have demonstrated that obesity and metabolic syndrome may be associated with profound microbiotal changes, and the induction of a metabolic syndrome phenotype through fecal transplants corroborates the important role of the microbiota in this disease. Dietary composition and caloric intake appear to swiftly regulate intestinal microbial composition and function. As most findings in this field of research are based on mouse studies, the relevance to human biology requires further investigation.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          An obesity-associated gut microbiome with increased capacity for energy harvest.

          The worldwide obesity epidemic is stimulating efforts to identify host and environmental factors that affect energy balance. Comparisons of the distal gut microbiota of genetically obese mice and their lean littermates, as well as those of obese and lean human volunteers have revealed that obesity is associated with changes in the relative abundance of the two dominant bacterial divisions, the Bacteroidetes and the Firmicutes. Here we demonstrate through metagenomic and biochemical analyses that these changes affect the metabolic potential of the mouse gut microbiota. Our results indicate that the obese microbiome has an increased capacity to harvest energy from the diet. Furthermore, this trait is transmissible: colonization of germ-free mice with an 'obese microbiota' results in a significantly greater increase in total body fat than colonization with a 'lean microbiota'. These results identify the gut microbiota as an additional contributing factor to the pathophysiology of obesity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            A human gut microbial gene catalogue established by metagenomic sequencing.

            To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence, from faecal samples of 124 European individuals. The gene set, approximately 150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes. The genes are largely shared among individuals of the cohort. Over 99% of the genes are bacterial, indicating that the entire cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species, which are also largely shared. We define and describe the minimal gut metagenome and the minimal gut bacterial genome in terms of functions present in all individuals and most bacteria, respectively.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbial ecology: human gut microbes associated with obesity.

              Two groups of beneficial bacteria are dominant in the human gut, the Bacteroidetes and the Firmicutes. Here we show that the relative proportion of Bacteroidetes is decreased in obese people by comparison with lean people, and that this proportion increases with weight loss on two types of low-calorie diet. Our findings indicate that obesity has a microbial component, which might have potential therapeutic implications.
                Bookmark

                Author and article information

                Journal
                Journal of Clinical Investigation
                J. Clin. Invest.
                American Society for Clinical Investigation
                0021-9738
                June 1 2011
                June 1 2011
                : 121
                : 6
                : 2126-2132
                Article
                10.1172/JCI58109
                3104783
                21633181
                afdf0c83-7d61-4465-8899-45afb1d96c44
                © 2011
                History

                Comments

                Comment on this article