156
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epigenetic Gene Promoter Methylation at Birth Is Associated With Child’s Later Adiposity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE

          Fixed genomic variation explains only a small proportion of the risk of adiposity. In animal models, maternal diet alters offspring body composition, accompanied by epigenetic changes in metabolic control genes. Little is known about whether such processes operate in humans.

          RESEARCH DESIGN AND METHODS

          Using Sequenom MassARRAY we measured the methylation status of 68 CpGs 5′ from five candidate genes in umbilical cord tissue DNA from healthy neonates. Methylation varied greatly at particular CpGs: for 31 CpGs with median methylation ≥5% and a 5–95% range ≥10%, we related methylation status to maternal pregnancy diet and to child’s adiposity at age 9 years. Replication was sought in a second independent cohort.

          RESULTS

          In cohort 1, retinoid X receptor-α (RXRA) chr9:136355885+ and endothelial nitric oxide synthase (eNOS) chr7:150315553+ methylation had independent associations with sex-adjusted childhood fat mass (exponentiated regression coefficient [β] 17% per SD change in methylation [95% CI 4–31], P = 0.009, n = 64, and β = 20% [9–32], P < 0.001, n = 66, respectively) and %fat mass (β = 10% [1–19], P = 0.023, n = 64 and β =12% [4–20], P = 0.002, n = 66, respectively). Regression analyses including sex and neonatal epigenetic marks explained >25% of the variance in childhood adiposity. Higher methylation of RXRA chr9:136355885+, but not of eNOS chr7:150315553+, was associated with lower maternal carbohydrate intake in early pregnancy, previously linked with higher neonatal adiposity in this population. In cohort 2, cord eNOS chr7:150315553+ methylation showed no association with adiposity, but RXRA chr9:136355885+ methylation showed similar associations with fat mass and %fat mass (β = 6% [2–10] and β = 4% [1–7], respectively, both P = 0.002, n = 239).

          CONCLUSIONS

          Our findings suggest a substantial component of metabolic disease risk has a prenatal developmental basis. Perinatal epigenetic analysis may have utility in identifying individual vulnerability to later obesity and metabolic disease.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Developmental plasticity and human health.

          Many plants and animals are capable of developing in a variety of ways, forming characteristics that are well adapted to the environments in which they are likely to live. In adverse circumstances, for example, small size and slow metabolism can facilitate survival, whereas larger size and more rapid metabolism have advantages for reproductive success when resources are more abundant. Often these characteristics are induced in early life or are even set by cues to which their parents or grandparents were exposed. Individuals developmentally adapted to one environment may, however, be at risk when exposed to another when they are older. The biological evidence may be relevant to the understanding of human development and susceptibility to disease. As the nutritional state of many human mothers has improved around the world, the characteristics of their offspring--such as body size and metabolism--have also changed. Responsiveness to their mothers' condition before birth may generally prepare individuals so that they are best suited to the environment forecast by cues available in early life. Paradoxically, however, rapid improvements in nutrition and other environmental conditions may have damaging effects on the health of those people whose parents and grandparents lived in impoverished conditions. A fuller understanding of patterns of human plasticity in response to early nutrition and other environmental factors will have implications for the administration of public health.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Obesity in young men after famine exposure in utero and early infancy.

            In a historical cohort study of 300,000 19-year-old men exposed to the Dutch famine of 1944-45 and examined at military induction, we tested the hypothesis that prenatal and early postnatal nutrition determines subsequent obesity. Outcomes were opposite depending on the time of exposure. During the last trimester of pregnancy and the first months of life, exposure produced significantly lower obesity rates (P less than 0.005). This result is consistent with the inference that nutritional deprivation affected a critical period of development for adipose-tissue cellularity. During the first half of pregnancy, however, exposure resulted in significantly higher obesity rates (P less than 0.0005). This observation is consistent with the inference that nutritional deprivation affected the differentiation of hypothalamic centers regulating food intake and growth, and that subsequent increased food availability produced an accumulation of excess fat in an organism growing to its predetermined maximum size.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome-wide association study of copy number variation in 16,000 cases of eight common diseases and 3,000 shared controls

              Copy number variants (CNVs) account for a major proportion of human genetic polymorphism and have been predicted to play an important role in genetic susceptibility to common disease. To address this we undertook a large direct genome-wide study of association between CNVs and eight common human diseases. Using a purpose-designed array we typed ~19,000 individuals into distinct copy-number classes at 3,432 polymorphic CNVs, including an estimated ~50% of all common CNVs larger than 500bp. We identified several biological artefacts that lead to false-positive associations, including systematic CNV differences between DNAs derived from blood and cell-lines. Association testing and follow-up replication analyses confirmed three loci where CNVs were associated with disease, IRGM for Crohn's disease, HLA for Crohn's disease, rheumatoid arthritis, and type 1 diabetes, and TSPAN8 for type 2 diabetes, though in each case the locus had previously been identified in SNP-based studies, reflecting our observation that the majority of common CNVs which are well-typed on our array are well tagged by SNPs and so have been indirectly explored through SNP studies. We conclude that common CNVs which can be typed on existing platforms are unlikely to contribute greatly to the genetic basis of common human diseases.
                Bookmark

                Author and article information

                Journal
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                May 2011
                23 April 2011
                : 60
                : 5
                : 1528-1534
                Affiliations
                [1] 1Institute of Developmental Sciences, University of Southampton, Southampton University Hospitals NHS Trust, U.K.
                [2] 2MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton University Hospitals NHS Trust, U.K.
                [3] 3NIHR Nutrition, Diet and Lifestyle Biomedical Research Unit, University of Southampton, Southampton University Hospitals NHS Trust, Southampton, U.K.
                [4] 4Liggins Institute, University of Auckland, Auckland, New Zealand
                [5] 5AgResearch, New Zealand
                [6] 6Singapore Institute of Clinical Sciences, Singapore, Singapore
                Author notes
                Corresponding author: Keith M. Godfrey, kmg@ 123456mrc.soton.ac.uk .
                Article
                0979
                10.2337/db10-0979
                3115550
                21471513
                afe3a19f-bd40-4ae0-9e08-0c53df7f3d24
                © 2011 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 14 July 2010
                : 27 February 2011
                Categories
                Obesity Studies

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article