Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

HBVdb: a knowledge database for Hepatitis B Virus

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      We have developed a specialized database, HBVdb ( http://hbvdb.ibcp.fr), allowing the researchers to investigate the genetic variability of Hepatitis B Virus (HBV) and viral resistance to treatment. HBV is a major health problem worldwide with more than 350 million individuals being chronically infected. HBV is an enveloped DNA virus that replicates by reverse transcription of an RNA intermediate. HBV genome is optimized, being circular and encoding four overlapping reading frames. Indeed, each nucleotide of the genome takes part in the coding of at least one protein. However, HBV shows some genome variability leading to at least eight different genotypes and recombinant forms. The main drugs used to treat infected patients are nucleos(t)ides analogs (reverse transcriptase inhibitors). Unfortunately, HBV mutants resistant to these drugs may be selected and be responsible for treatment failure. HBVdb contains a collection of computer-annotated sequences based on manually annotated reference genomes. The database can be accessed through a web interface that allows static and dynamic queries and offers integrated generic sequence analysis tools and specialized analysis tools (e.g. annotation, genotyping, drug resistance profiling).

      Related collections

      Most cited references 40

      • Record: found
      • Abstract: not found
      • Article: not found

      Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

      The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSI-BLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        MUSCLE: multiple sequence alignment with high accuracy and high throughput.

         Robert Edgar (2004)
        We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting, progressive alignment using a new profile function we call the log-expectation score, and refinement using tree-dependent restricted partitioning. The speed and accuracy of MUSCLE are compared with T-Coffee, MAFFT and CLUSTALW on four test sets of reference alignments: BAliBASE, SABmark, SMART and a new benchmark, PREFAB. MUSCLE achieves the highest, or joint highest, rank in accuracy on each of these sets. Without refinement, MUSCLE achieves average accuracy statistically indistinguishable from T-Coffee and MAFFT, and is the fastest of the tested methods for large numbers of sequences, aligning 5000 sequences of average length 350 in 7 min on a current desktop computer. The MUSCLE program, source code and PREFAB test data are freely available at http://www.drive5. com/muscle.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.

          The sensitivity of the commonly used progressive multiple sequence alignment method has been greatly improved for the alignment of divergent protein sequences. Firstly, individual weights are assigned to each sequence in a partial alignment in order to down-weight near-duplicate sequences and up-weight the most divergent ones. Secondly, amino acid substitution matrices are varied at different alignment stages according to the divergence of the sequences to be aligned. Thirdly, residue-specific gap penalties and locally reduced gap penalties in hydrophilic regions encourage new gaps in potential loop regions rather than regular secondary structure. Fourthly, positions in early alignments where gaps have been opened receive locally reduced gap penalties to encourage the opening up of new gaps at these positions. These modifications are incorporated into a new program, CLUSTAL W which is freely available.
            Bookmark

            Author and article information

            Affiliations
            1Unité Bases Moléculaires et Structurales des Systèmes Infectieux; UMR 5086 CNRS - Université Claude Bernard Lyon 1; IBCP FR 3302 - 7, passage du Vercors, 69367 Lyon CEDEX 07, 2INSERM, U1052, Viral Hepatitis Research Laboratory; Université Lyon 1, 151, cours Albert Thomas, 69003 Lyon, and 3Hospices Civils de Lyon, Hepatology Department, 69004 Lyon, France
            Author notes
            *To whom correspondence should be addressed. Tel: +33 4 37 65 29 47; Fax: +33 4 72 72 26 04; Email: christophe.combet@ 123456ibcp.fr
            Journal
            Nucleic Acids Res
            Nucleic Acids Res
            nar
            nar
            Nucleic Acids Research
            Oxford University Press
            0305-1048
            1362-4962
            January 2013
            January 2013
            2 November 2012
            2 November 2012
            : 41
            : D1 , Database issue
            : D566-D570
            23125365
            3531116
            10.1093/nar/gks1022
            gks1022
            © The Author(s) 2012. Published by Oxford University Press.

            This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com.

            Counts
            Pages: 5
            Categories
            Articles

            Genetics

            Comments

            Comment on this article