0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Diagnostic charting of panoramic radiography using deep-learning artificial intelligence system

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: not found
          • Article: not found

          Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine

            One of the most promising areas of health innovation is the application of artificial intelligence (AI), primarily in medical imaging. This article provides basic definitions of terms such as “machine/deep learning” and analyses the integration of AI into radiology. Publications on AI have drastically increased from about 100–150 per year in 2007–2008 to 700–800 per year in 2016–2017. Magnetic resonance imaging and computed tomography collectively account for more than 50% of current articles. Neuroradiology appears in about one-third of the papers, followed by musculoskeletal, cardiovascular, breast, urogenital, lung/thorax, and abdomen, each representing 6–9% of articles. With an irreversible increase in the amount of data and the possibility to use AI to identify findings either detectable or not by the human eye, radiology is now moving from a subjective perceptual skill to a more objective science. Radiologists, who were on the forefront of the digital era in medicine, can guide the introduction of AI into healthcare. Yet, they will not be replaced because radiology includes communication of diagnosis, consideration of patient’s values and preferences, medical judgment, quality assurance, education, policy-making, and interventional procedures. The higher efficiency provided by AI will allow radiologists to perform more value-added tasks, becoming more visible to patients and playing a vital role in multidisciplinary clinical teams.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tooth detection and numbering in panoramic radiographs using convolutional neural networks

              Analysis of dental radiographs is an important part of the diagnostic process in daily clinical practice. Interpretation by an expert includes teeth detection and numbering. In this project, a novel solution based on convolutional neural networks (CNNs) is proposed that performs this task automatically for panoramic radiographs. A data set of 1352 randomly chosen panoramic radiographs of adults was used to train the system. The CNN-based architectures for both teeth detection and numbering tasks were analyzed. The teeth detection module processes the radiograph to define the boundaries of each tooth. It is based on the state-of-the-art Faster R-CNN architecture. The teeth numbering module classifies detected teeth images according to the FDI notation. It utilizes the classical VGG-16 CNN together with the heuristic algorithm to improve results according to the rules for spatial arrangement of teeth. A separate testing set of 222 images was used to evaluate the performance of the system and to compare it to the expert level. For the teeth detection task, the system achieves the following performance metrics: a sensitivity of 0.9941 and a precision of 0.9945. For teeth numbering, its sensitivity is 0.9800 and specificity is 0.9994. Experts detect teeth with a sensitivity of 0.9980 and a precision of 0.9998. Their sensitivity for tooth numbering is 0.9893 and specificity is 0.9997. The detailed error analysis showed that the developed software system makes errors caused by similar factors as those for experts. The performance of the proposed computer-aided diagnosis solution is comparable to the level of experts. Based on these findings, the method has the potential for practical application and further evaluation for automated dental radiograph analysis. Computer-aided teeth detection and numbering simplifies the process of filling out digital dental charts. Automation could help to save time and improve the completeness of electronic dental records.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Oral Radiology
                Oral Radiol
                Springer Science and Business Media LLC
                0911-6028
                1613-9674
                July 2022
                October 05 2021
                July 2022
                : 38
                : 3
                : 363-369
                Article
                10.1007/s11282-021-00572-0
                34611840
                affdc9b0-f64d-498e-ab83-59bff5866e4c
                © 2022

                https://www.springer.com/tdm

                https://www.springer.com/tdm

                History

                Comments

                Comment on this article