7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ¿Pueden las mediciónes 3D derivadas de la DXA lumbar predecir fracturas en las vértebras dorsales? Translated title: Can 3D measurements obtained by lumbar DXA predict fractures in the dorsal vertebrae?

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Resumen Objetivo: Valorar la asociación de las mediciónes tridimensionales (3D) derivadas de la absorciometría de rayos X de energía dual (DXA) lumbar con las fracturas osteoporóticas en las vértebras dorsales. Material y métodos: Analizamos retrospectivamente 32 mujeres postmenopáusicas: 16 con fracturas incidentes en las vértebras dorsales y 16 controles sin ningún tipo de fractura. Las DXA lumbares se adquirieron en la visita inicial (es decir, antes del evento de fractura) y se midió la densidad mineral ósea de área (DMOa) en las vértebras L1 a L4. Las mediciónes 3D derivadas de la DXA se evaluaron utilizando un software de modelado 3D (3DSHAPER). La densidad mineral ósea volumétrica (DMOv) se calculó en el hueso trabecular, cortical e integral. También se midió el grosor cortical y la DMO superficial (DMOs) cortical. Las diferencias en las mediciónes derivadas de la DXA entre los grupos de fracturados y controles se evaluaron utilizando una prueba t de Student no pareada. También se calculó la razón de probabilidades (OR) y el área bajo la curva característica operativa del receptor (AUC). Resultados: En el presente estudio casocontrol ajustado por edad no se encontraron diferencias significativas entre los grupos de fracturados y controles en términos de peso (ρ=0,44), altura (ρ=0,25) y DMOa (ρ=0,11). Sin embargo, sí se encontraron diferencias significativas (ρ<0,05) en la DMOv integral y trabecular y en la DMOs cortical. La DMOv trabecular en el cuerpo vertebral fue la medida que mejor discriminó entre ambos grupos, con un AUC de 0,733, respecto a 0,682 para la DMOa. Conclusión: Este estudio muestra la capacidad de los modelos 3D derivados de la DXA lumbar para discriminar entre sujetos con fracturas incidentes en las vértebras dorsales y controles. Es necesario analizar cohortes mayores para determinar si estas mediciónes podrían mejorar la predicción del riesgo de fractura en la práctica clínica.

          Translated abstract

          Abstract Objective: To assess the relation between threedimensional (3D) measurements obtained by lumbar dual energy Xray absorptiometry (DXA) and osteoporotic fractures in dorsal vertebrae. Material and methods: We analysed retrospectively 32 postmenopausal women, allocated to two groups: 16 women in the experimental group, who presented incident fractures of the dorsal vertebrae, and 16 women in the control group, who did not show any type of fracture. Measurements of the (aBMD) of vertebrae L1 through L4 were taken at the initial visit (i.e., prior to the fracture event) by lumbar dualenergy xray absorptiometries (DXA). 3D measurements obtained by DXA were evaluated using 3D modelling software (3DSHAPER). Volumetric bone mineral density (vBMD) was calculated in the trabecular, cortical and integral bone. Cortical thickness and cortical surface BMD (sBMD) were also measured. Differences in measurements derived from the DXA between the experimental and control groups were assessed using an unpaired Student ttest. The odds ratio (OR) and the area under the receiver operating characteristic curve (AUC) were also determined. Results: In the present ageadjusted casecontrol study, no significant differences were found between the experimental and control groups in terms of weight (ρ=0.44), height (ρ=0.25) and aBMD (ρ=0.11). However, significant differences (ρ<0.05) were found in the integral and trabecular vBMD and in the cortical sBMD. Trabecular vBMD in the vertebral body was the measure that best discriminated between both groups, with an AUC of 0.733, compared to 0.682 of the aBMD. Conclusion: This study shows the ability of 3D models resultant from lumbar DXAs to discern between subjects with incident fractures in the dorsal vertebrae and control subjects. It is necessary to analyse larger cohorts to establish if these measurements could improve the prediction of fracture risk in clinical practice.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Diagnosis of osteoporosis and assessment of fracture risk.

          John Kanis (2002)
          The diagnosis of osteoporosis centres on the assessment of bone mineral density (BMD). Osteoporosis is defined as a BMD 2.5 SD or more below the average value for premenopausal women (T score < -2.5 SD). Severe osteoporosis denotes osteoporosis in the presence of one or more fragility fractures. The same absolute value for BMD used in women can be used in men. The recommended site for diagnosis is the proximal femur with dual energy X-ray absorptiometry (DXA). Other sites and validated techniques, however, can be used for fracture prediction. Although hip fracture prediction with BMD alone is at least as good as blood pressure readings to predict stroke, the predictive value of BMD can be enhanced by use of other factors, such as biochemical indices of bone resorption and clinical risk factors. Clinical risk factors that contribute to fracture risk independently of BMD include age, previous fragility fracture, premature menopause, a family history of hip fracture, and the use of oral corticosteroids. In the absence of validated population screening strategies, a case finding strategy is recommended based on the finding of risk factors. Treatment should be considered in individuals subsequently shown to have a high fracture risk. Because of the many techniques available for fracture risk assessment, the 10-year probability of fracture is the desirable measurement to determine intervention thresholds. Many treatments can be provided cost-effectively to men and women if hip fracture probability over 10 years ranges from 2% to 10% dependent on age.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Worldwide prevalence and incidence of osteoporotic vertebral fractures.

            We investigated the prevalence and incidence of vertebral fractures worldwide. We used a systematic Medline search current to 2015 and updated as per authors' libraries. A total of 62 articles of fair to good quality and comparable methods for vertebral fracture identification were considered. The prevalence of morphometric vertebral fractures in European women is highest in Scandinavia (26%) and lowest in Eastern Europe (18%). Prevalence rates in North America (NA) for White women ≥50 are 20-24%, with a White/Black ratio of 1.6. Rates in women ≥50 years in Latin America are overall lower than Europe and NA (11-19%). In Asia, rates in women above ≥65 are highest in Japan (24%), lowest in Indonesia (9%), and in the Middle East, Lebanon, rates are 20%. The highest-lowest ratio between countries, within and across continents, varied from 1.4-2.6. Incidence data is less abundant and more heterogeneous. Age-standardized rates in studies combining hospitalized and ambulatory vertebral fractures are highest in South Korea, USA, and Hong Kong and lowest in the UK. Neither a North-South gradient nor a relation to urbanization is evident. Conversely, the incidence of hospitalized vertebral fractures in European patients ≥50 shows a North-South gradient with 3-3.7-fold variability. In the USA, rates in Whites are approximately 4-fold higher than in Blacks. Vertebral fractures variation worldwide is lower than observed with hip fractures, and some of highest rates are unexpectedly from Asia. Better quality representative studies are needed. We investigate the occurrence of vertebral fractures, worldwide, using published data current until the present. Worldwide, the variation in vertebral fractures is lower than observed for hip fractures. Some of the highest rates are from North America and unexpectedly Asia. The highest-lowest ratio between countries, within and across continents, varied from 1.4-2.6. Better quality representative data is needed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans.

              Finite element analysis of computed tomography (CT) scans provides noninvasive estimates of bone strength at the spine and hip. To further validate such estimates clinically, we performed a 5-year case-control study of 1110 women and men over age 65 years from the AGES-Reykjavik cohort (case = incident spine or hip fracture; control = no incident spine or hip fracture). From the baseline CT scans, we measured femoral and vertebral strength, as well as bone mineral density (BMD) at the hip (areal BMD only) and lumbar spine (trabecular volumetric BMD only). We found that for incident radiographically confirmed spine fractures (n = 167), the age-adjusted odds ratio for vertebral strength was significant for women (2.8, 95% confidence interval [CI] 1.8 to 4.3) and men (2.2, 95% CI 1.5 to 3.2) and for men remained significant (p = 0.01) independent of vertebral trabecular volumetric BMD. For incident hip fractures (n = 171), the age-adjusted odds ratio for femoral strength was significant for women (4.2, 95% CI 2.6 to 6.9) and men (3.5, 95% CI 2.3 to 5.3) and remained significant after adjusting for femoral neck areal BMD in women and for total hip areal BMD in both sexes; fracture classification improved for women by combining femoral strength with femoral neck areal BMD (p = 0.002). For both sexes, the probabilities of spine and hip fractures were similarly high at the BMD-based interventional thresholds for osteoporosis and at corresponding preestablished thresholds for "fragile bone strength" (spine: women ≤ 4500 N, men ≤ 6500 N; hip: women ≤ 3000 N, men ≤ 3500 N). Because it is well established that individuals over age 65 years who have osteoporosis at the hip or spine by BMD criteria should be considered at high risk of fracture, these results indicate that individuals who have fragile bone strength at the hip or spine should also be considered at high risk of fracture.
                Bookmark

                Author and article information

                Journal
                romm
                Revista de Osteoporosis y Metabolismo Mineral
                Rev Osteoporos Metab Miner
                Sociedad Española de Investigaciones Óseas y Metabolismo Mineral (Madrid, Madrid, Spain )
                1889-836X
                2173-2345
                June 2020
                : 12
                : 2
                : 45-52
                Affiliations
                [2] Barcelona orgnameBCN Medtech orgdiv1Universidad Pompeu Fabra España
                [3] Barcelona orgnameCETIR Grupo Médico España
                [4] Barcelona orgnameICREA España
                [1] Barcelona orgnameUnidad Musculoesquelética orgdiv1Galgo Medical España
                Article
                S1889-836X2020000200003 S1889-836X(20)01200200003
                10.4321/s1889-836x2020000200003
                afff3823-4db9-45bb-b920-664568af1313

                This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 International License.

                History
                : 27 February 2020
                : 28 June 2019
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 36, Pages: 8
                Product

                SciELO Spain

                Categories
                Originales

                trabecular,cortical,fractura vertebral,osteoporosis,densidad mineral ósea superficial,densidad mineral ósea volumétrica,fracture risk,riesgo de fractura,modelado 3D,superficial bone mineral density,vertebral fracture,volumetric bone mineral density,3D modelling

                Comments

                Comment on this article