11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Changes in human muscle transverse relaxation following short-term creatine supplementation.

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The rapid increase in body mass that often occurs following creatine (Cr) supplementation is believed to be due to intracellular water retention. The purpose of this study was to determine whether Cr consumption alters the magnetic resonance (MR) transverse relaxation (T(2)) distribution of skeletal muscle. Transverse relaxation can be used to model water compartments within a cell or tissue. In this double-blind study, subjects were asked to supplement their normal diet with creatine monohydrate (20 g day(-1) for 5 days) mixed with a grape drink (Creatine group, n = 7), or the grape drink alone (Placebo group, n = 8). Phosphorous MR spectroscopy was used to determine the effectiveness of the supplementation protocol. Subjects that responded to the Cr supplementation (i.e. showed a > 5 % increase in the ratio of the levels of phosphocreatine (PCr) and ATP) were placed in the Creatine group. Both proton MR imaging and spectroscopy were used to acquire T(2) data, at 1.89 T, from the flexor digitorum profundus muscle of each subject before and after supplementation. Following the supplementation period, the Creatine group showed a gain in body mass (1.2 +/- 0.8 kg, P < 0.05, mean +/- S.D.), and an increase in PCr/ATP ratio (23.8 +/- 16.4 %, P < 0.001). Neither group showed any changes in intracellular pH or T(2) calculated from MR images. However, the spectroscopy data revealed at least three components (> 5 ms) at approximately 20, 40 and 125 ms in both groups. Only in the Creatine group was there an increase in the apparent proton concentration of the two shorter components combined (+5.0 +/- 4.7 %, P < 0.05). According to the cellular water compartment model, the changes observed in the shorter T(2) components are consistent with an increase in intracellular water.

          Related collections

          Author and article information

          Journal
          Exp. Physiol.
          Experimental physiology
          0958-0670
          0958-0670
          May 2002
          : 87
          : 3
          Affiliations
          [1 ] Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada. gdmarsh@uwo.ca
          Article
          EPH_2382
          12089606
          afff8aef-a8ec-4c35-b0d7-945bf060c80f
          History

          Comments

          Comment on this article