13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Physiologic effects of positive end-expiratory pressure and mask pressure support during exacerbations of chronic obstructive pulmonary disease.

      American journal of respiratory and critical care medicine
      Acute Disease, Aged, Carbon Dioxide, blood, Forced Expiratory Volume, Humans, Lung Diseases, Obstructive, physiopathology, therapy, Lung Volume Measurements, Male, Masks, Middle Aged, Oxygen, Positive-Pressure Respiration, Respiration, Respiratory Muscles, Vital Capacity

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To assess physiologic effects of continuous positive airway pressure (CPAP) and positive end-expiratory pressure (PEEP) during noninvasive pressure support ventilation (PSV) in patients with acute exacerbation of chronic obstructive pulmonary disease (COPD), we measured in seven patients the breathing pattern, lung mechanics, diaphragmatic effort (PTPdi), and arterial blood gases under four conditions: (1) spontaneous breathing (SB); (2) CPAP; (3) PSV of 10 cm H2O; and (4) PSV plus PEEP (PEEP + PSV). CPAP and PEEP were set between 80 and 90% of dynamic intrinsic PEEP (PEEPidyn) measured during SB and PSV, respectively. PEEPidyn was obtained (1) from the decrease in pleural pressure (delta Ppl) preceding inspiration, and (2) subtracting the fall in gastric pressure (delta Pga) caused by relaxation of the abdominal muscles from the delta Ppl decrease. Abdominal muscle activity made PEEPidyn overestimated in almost all instances (p < 0.0001). PSV increased minute ventilation, improved gas exchange, and decreased PTPdi. PEEP added to PSV, likewise CPAP compared with SB, further significantly decreased the diaphragmatic effort (PTPdi went from 322 +/- 111 to 203 +/- 63 cm H2O.s) by counterbalancing PEEPidyn, which went from 5.4 +/- 4.0 to 3.1 +/- 2.3 cm H2O. These data support the use of low levels of PEEP (80 to 90% of PEEPidyn) to treat acute exacerbation of COPD by means of mask PSV.

          Related collections

          Author and article information

          Comments

          Comment on this article