55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular mechanisms of hepatic apoptosis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Apoptosis is a prominent feature of liver diseases. Causative factors such as alcohol, viruses, toxic bile acids, fatty acids, drugs, and immune response, can induce apoptotic cell death via membrane receptors and intracellular stress. Apoptotic signaling network, including membrane death receptor-mediated cascade, reactive oxygen species (ROS) generation, endoplasmic reticulum (ER) stress, lysosomal permeabilization, and mitochondrial dysfunction, is intermixed each other, but one mechanism may dominate at a particular stage. Mechanisms of hepatic apoptosis are complicated by multiple signaling pathways. The progression of liver disease is affected by the balance between apoptotic and antiapoptotic capabilities. Therapeutic options of liver injury are impacted by the clear understanding toward mechanisms of hepatic apoptosis.

          Related collections

          Most cited references123

          • Record: found
          • Abstract: found
          • Article: not found

          Human occludin is a hepatitis C virus entry factor required for infection of mouse cells

          Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. The development of much needed specific antiviral therapies and an effective vaccine has been hampered by the lack of a convenient small animal model. The determinants restricting HCV tropism to human and chimpanzee hosts are unknown. Replication of the viral RNA has been demonstrated in mouse cells1,2, but these cells are not infectable with either lentiviral particles bearing HCV glycoproteins (HCVpp)3 or HCV produced in cell culture (HCVcc)(unpublished data), suggesting a block at the level of entry. Through an iterative cDNA library screening approach we have identified human occludin (OCLN) as an essential HCV cell entry factor that is able to render murine cells infectable with HCVpp. Similarly, OCLN is required for HCV-susceptibility of human cells, since its overexpression in uninfectable cells specifically enhanced HCVpp uptake while its silencing in permissive cells impaired both HCVpp and HCVcc infection. In addition to OCLN, HCVpp infection of murine cells required expression of the previously identified HCV entry factors, CD814, scavenger receptor class B type I (SR-BI)5, and claudin-1 (CLDN1)6. While the mouse versions of SR-BI and CLDN1 function at least as well as the human proteins for promoting HCV entry; both OCLN and CD81, however, must be of human origin to allow efficient infection. The species-specific determinants of OCLN were mapped to its second extracellular loop. The identification of OCLN as a new HCV entry factor further highlights the importance of the tight junction complex in the viral entry process and provides a major advance towards efforts to develop small animal models for HCV.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans.

            Nonalcoholic fatty liver disease (NAFLD) is associated with all features of the metabolic syndrome. Although deposition of excess triglycerides within liver cells, a hallmark of NAFLD, is associated with a loss of insulin sensitivity, it is not clear which cellular abnormality arises first. We have explored this in mice overexpressing carbohydrate responsive element-binding protein (ChREBP). On a standard diet, mice overexpressing ChREBP remained insulin sensitive, despite increased expression of genes involved in lipogenesis/fatty acid esterification and resultant hepatic steatosis (simple fatty liver). Lipidomic analysis revealed that the steatosis was associated with increased accumulation of monounsaturated fatty acids (MUFAs). In primary cultures of mouse hepatocytes, ChREBP overexpression induced expression of stearoyl-CoA desaturase 1 (Scd1), the enzyme responsible for the conversion of saturated fatty acids (SFAs) into MUFAs. SFA impairment of insulin-responsive Akt phosphorylation was therefore rescued by the elevation of Scd1 levels upon ChREBP overexpression, whereas pharmacological or shRNA-mediated reduction of Scd1 activity decreased the beneficial effect of ChREBP on Akt phosphorylation. Importantly, ChREBP-overexpressing mice fed a high-fat diet showed normal insulin levels and improved insulin signaling and glucose tolerance compared with controls, despite having greater hepatic steatosis. Finally, ChREBP expression in liver biopsies from patients with nonalcoholic steatohepatitis was increased when steatosis was greater than 50% and decreased in the presence of severe insulin resistance. Together, these results demonstrate that increased ChREBP can dissociate hepatic steatosis from insulin resistance, with beneficial effects on both glucose and lipid metabolism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease.

              Non-alcoholic fatty liver disease (NAFLD) comprises a spectrum of stages from simple steatosis to non-alcoholic steatohepatitis (NASH). However, disease pathogenesis remains largely unknown. microRNA (miRNA or miR) expression has recently been reported to be altered in human NASH, and modulated by ursodeoxycholic acid (UDCA) in the rat liver. Here, we aimed at evaluating the miR-34a/Sirtuin 1(SIRT1)/p53 pro-apoptotic pathway in human NAFLD, and to elucidate its function and modulation by UDCA in the rat liver and primary rat hepatocytes. Liver biopsies were obtained from NAFLD morbid obese patients undergoing bariatric surgery. Rat livers were collected from animals fed a 0.4% UDCA diets. Primary rat hepatocytes were incubated with bile acids or free fatty acids (FFAs) and transfected with a specific miRNA-34a precursor and/or with a p53 overexpression plasmid. p53 transcriptional activity was assessed by ELISA and target reporter constructs. miR-34a, apoptosis and acetylated p53 increased with disease severity, while SIRT1 diminished in the NAFLD liver. UDCA inhibited the miR-34a/SIRT1/p53 pathway in the rat liver in vivo and in primary rat hepatocytes. miR-34a overexpression confirmed its targeting by UDCA, which prevented miR-34a-dependent repression of SIRT1, p53 acetylation, and apoptosis. Augmented apoptosis by FFAs in miR-34a overexpressing cells was also inhibited by UDCA. Finally, p53 overexpression activated miR-34a/SIRT1/p53, which in turn was inhibited by UDCA, via decreased p53 transcriptional activity. Our results support a link between liver cell apoptosis and miR-34a/SIRT1/p53 signaling, specifically modulated by UDCA, and NAFLD severity. Potential endogenous modulators of NAFLD pathogenesis may ultimately provide new tools for therapeutic intervention. Copyright © 2012 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group
                2041-4889
                January 2014
                16 January 2014
                1 January 2014
                : 5
                : 1
                : e996
                Affiliations
                [1 ]Department of Surgery, University of Illinois College of Medicine at Peoria , Peoria, IL 61605, USA
                Author notes
                [* ]Department of Surgery, University of Illinois College of Medicine at Peoria , One Illini Drive, Peoria, IL 61605, USA. Tel: +1 309 680 8617; Fax: +1 309 680 8617; E-mail: kewang@ 123456uic.edu
                Article
                cddis2013499
                10.1038/cddis.2013.499
                4040708
                24434519
                b00567fe-223e-4251-b925-ab05a3c376d3
                Copyright © 2014 Macmillan Publishers Limited

                This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                : 13 March 2013
                : 07 November 2013
                : 07 November 2013
                Categories
                Review

                Cell biology
                hepatic apoptosis,liver injury,ros,er stress,lysosomal permeabilization,mitochondrial dysfunction

                Comments

                Comment on this article